Since, Mean $=\frac{\sum f _{ i } x _{ i }}{\sum f _{ i }}$, where $x _{ i }$ are observations with frequencies $f _{ i }, i =1,2, \ldots . n$ The required mean is given by, $\bar{X}=\frac{0.1+1 \cdot{ }^{n} C_{1}+2 \cdot{ }^{n} C_{2}+\ldots .+n \cdot{ }^{n} C_{n}}{1+{ }^{n} C_{1}+{ }^{n} C_{2}+\ldots +{ }^{n} C_{n}}$ $=\frac{\displaystyle\sum_{r=0}^{n} n \cdot{ }^{n} C_{r}}{\displaystyle\sum_{r=0}^{n}{ }^{n} C_{r}}=\frac{n \displaystyle\sum_{r=0}^{n}{ }^{n-1} C_{r-1}}{\displaystyle\sum_{r=0}^{n}{ }^{n} C_{r}}$ $=\frac{n 2^{n-1}}{2^{n}}=\frac{n}{2}$