The given region is bounded by:
The circle \( x^2 + y^2 \leq 1 \),
The line \( y^2 \leq 1 - x \).
Step 1: Determine the total area of the region
The total area \( A \) is the sum of two parts:
1. The area under the semicircle, and
2. The area under the curve defined by \( y = \sqrt{1 - x} \).
Thus, the total area \( A \) is:
\[
A = 2 \int_{0}^{1} \sqrt{1 - x^2} \, dx + \int_{0}^{1} \sqrt{1 - x} \, dx.
\]
Step 2: Solve the first integral (semicircular area)
The first integral represents the area of a quarter-circle, and is known:
\[
\int_{0}^{1} \sqrt{1 - x^2} \, dx = \frac{\pi}{4}.
\]
Step 3: Solve the second integral (area under the curve)
For the second integral, we have:
\[
\int_{0}^{1} \sqrt{1 - x} \, dx.
\]
Let’s use the substitution \( 1 - x = t^2 \), then:
\[
dx = -2t \, dt, \quad \text{when } x = 0 \implies t = 1, \quad x = 1 \implies t = 0.
\]
Substitute into the integral:
\[
\int_{0}^{1} \sqrt{1 - x} \, dx = \int_{1}^{0} t \cdot (-2t) \, dt = 2 \int_{0}^{1} t^2 \, dt.
\]
Now solve:
\[
2 \int_{0}^{1} t^2 \, dt = 2 \left[ \frac{t^3}{3} \right]_{0}^{1} = \frac{2}{3}.
\]
Step 4: Combine the results
Now, combining the areas from both integrals:
\[
A = 2 \cdot \left( \frac{\pi}{4} \right) + \frac{2}{3} = \frac{\pi}{2} + \frac{4}{3}.
\]
Final Answer:
\[
\boxed{\frac{\pi}{2} + \frac{4}{3}}.
\]