The correct answer is C:\(=\frac{4}{3}(8π-\sqrt{3})units\) The given equations are \(x^2+y^2=16...(1)\) \(y^2=6x...(2)\)
Area bounded by the circle and parabola \(=2[Area(OADO)+Area(ADBA)]\) \(=2[∫^2_0\sqrt{16x}dx+∫^4_2\sqrt{16-x^2}dx]\) \(=2[\sqrt{6}\bigg[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\bigg]^2_0]+2\bigg[\frac{x}{2}\sqrt{16-x^2}+\frac{16}{2}sin^{-1}\frac{x}{4}\bigg]^4_2\) \(=2\sqrt{6}\times\frac{2}{3}\bigg[x^{\frac{3}{2}}\bigg]^2_0+2[8.\frac{π}{2}-\sqrt{16-4}-8sin^{-1}(\frac{1}{2})]\) \(=\frac{4\sqrt{6}}{3}(2\sqrt{2})+2[4π-\sqrt{12}-8\frac{π}{6}]\) \(=\frac{16\sqrt{3}}{3}+8π-4\sqrt{3}-\frac{8}{3}π\) \(=\frac{4}{3}[4\sqrt{3}+6π-3\sqrt{3}-2π]\) \(=\frac{4}{3}[\sqrt{3}+4π]\) \(=\frac{4}{3}[4π+\sqrt{3}]units\) Area of circle\(=π(r)^2\) \(=π(4)^2\) \(=16πunits\) ∴Required area\(=16π-\frac{4}{3}[4π+\sqrt{3}]\) \(=\frac{4}{3}[4\times3π-4π-\sqrt{3}]\) \(=\frac{4}{3}(8π-\sqrt{3})units\) Thus,the correct answer is C.