The given region is bounded by the parabola \(y^2 = 2x\) and the line \(y = 4x - 1\).
Step 1: Find intersection points.
Substituting \(x = \frac{y+1}{4}\) (from \(y = 4x - 1\)) into \(y^2 = 2x\):
\[ y^2 = 2 \cdot \frac{y+1}{4} \implies y^2 = \frac{y+1}{2}. \] Simplify to: \[ 2y^2 - y - 1 = 0 \implies (2y + 1)(y - 1) = 0. \] Thus, \(y = -\frac{1}{2}\) and \(y = 1\).
Step 2: Set up integral for the shaded area.
The shaded area is calculated as: \[ \text{Area} = \int_{-\frac{1}{2}}^1 (x_{\text{right}} - x_{\text{left}}) \, dy, \] where \(x_{\text{right}} = \frac{y+1}{4}\) (line) and \(x_{\text{left}} = \frac{y^2}{2}\) (parabola).
Step 3: Solve the integral.
\[ \text{Area} = \int_{-\frac{1}{2}}^1 \left( \frac{y+1}{4} - \frac{y^2}{2} \right) dy = \int_{-\frac{1}{2}}^1 \frac{y+1}{4} \, dy - \int_{-\frac{1}{2}}^1 \frac{y^2}{2} \, dy. \] Simplify: \[ \text{Area} = \left[ \frac{y^2}{8} + \frac{y}{4} \right]_{-\frac{1}{2}}^1 - \left[ \frac{y^3}{6} \right]_{-\frac{1}{2}}^1. \] Compute each term:
Simplify to find the area: \[ \text{Area} = \frac{9}{32}. \]
Two parabolas have the same focus $(4, 3)$ and their directrices are the $x$-axis and the $y$-axis, respectively. If these parabolas intersect at the points $A$ and $B$, then $(AB)^2$ is equal to:
Let \( y^2 = 12x \) be the parabola and \( S \) its focus. Let \( PQ \) be a focal chord of the parabola such that \( (SP)(SQ) = \frac{147}{4} \). Let \( C \) be the circle described by taking \( PQ \) as a diameter. If the equation of the circle \( C \) is: \[ 64x^2 + 64y^2 - \alpha x - 64\sqrt{3}y = \beta, \] then \( \beta - \alpha \) is equal to:
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
