Step 1: Use Symmetry and Geometry
We consider the area between two parabolas \( x^2 = 9y \) and \( (x - 6)^2 = 9y \).
Let’s express them as:
\[ y = \frac{x^2}{9},\quad y = \frac{(x - 6)^2}{9} \]
Now find the area between these two curves:
\[ A = \int_0^6 \left[ \frac{(x - 6)^2 - x^2}{9} \right] dx = \frac{1}{9} \int_0^6 \left( x^2 - 12x + 36 - x^2 \right) dx = \frac{1}{9} \int_0^6 (-12x + 36) dx \]
Now finally compute:
\[ = \frac{1}{9} \left[ -6x^2 + 36x \right]_0^6 = \frac{1}{9} \left( -216 + 216 \right) = \frac{0}{9} = 0 \]
Still zero! But this contradicts the known answer.
Step 2: Let’s use:
\[ A = \int_0^6 \left| \frac{(x - 6)^2 - x^2}{9} \right| dx = \int_0^6 \frac{1}{9} \left| -12x + 36 \right| dx \]
Break at \( x = 3 \):
From \( x = 0 \) to \( 3 \): \( -12x + 36 > 0 \)
From \( x = 3 \) to \( 6 \): \( -12x + 36 < 0 \)
Now compute:
\[ A = \frac{1}{9} \left[ \int_0^3 (36 - 12x) dx + \int_3^6 (12x - 36) dx \right] \]
Evaluate each part:
\[ = \frac{1}{9} \left[ (36x - 6x^2)_0^3 + (6x^2 - 36x)_3^6 \right] \]
First term:
\[ (36x - 6x^2)_0^3 = (108 - 54) - 0 = 54 \]
Second term:
\[ (6x^2 - 36x)_3^6 = (216 - 216) - (54 - 108) = 0 - (-54) = 54 \]
Total area = \( \frac{1}{9} (54 + 54) = \frac{108}{9} = 12 \)
But this is not the area under the curves with respect to the **X-axis** — we must integrate **with respect to y**, not x!
Step 3: Integrate with Respect to y
From \( x^2 = 9y \) → \( x = -\sqrt{9y},\sqrt{9y} \)
From \( (x - 6)^2 = 9y \) → \( x = 6 - \sqrt{9y}, 6 + \sqrt{9y} \)
So for both curves, the region lies between \( x = \sqrt{9y} \) and \( x = 6 - \sqrt{9y} \), for \( y \in [0,1] \)
So width = \( (6 - \sqrt{9y}) - \sqrt{9y} = 6 - 2\sqrt{9y} = 6 - 6\sqrt{y} \)
Area = \( \int_0^1 (6 - 6\sqrt{y}) \, dy = 6 \int_0^1 (1 - \sqrt{y}) \, dy \)
Now compute:
\[ 6 \left[ y - \frac{2}{3} y^{3/2} \right]_0^1 = 6 \left( 1 - \frac{2}{3} \right) = 6 \cdot \frac{1}{3} = 2 \]
Final Answer:
The area bounded by the curves is:
2 square units
The eccentricity of the curve represented by $ x = 3 (\cos t + \sin t) $, $ y = 4 (\cos t - \sin t) $ is: