Step 1: Rewrite the equations.
\( y = 1 - |x| \) and \( y = |x| - 1 \).
Step 2: Find intersection points.
Setting \( 1 - |x| = |x| - 1 \implies 2 = 2|x| \implies |x| = 1 \implies x = \pm 1 \). Points are \( (-1, 0) \) and \( (1, 0) \).
Step 3: Set up the integral for the area.
Area \( = \int_{-1}^{1} [(1 - |x|) - (|x| - 1)] dx = \int_{-1}^{1} (2 - 2|x|) dx \).
Step 4: Evaluate the integral using symmetry.
Area \( = 2 \int_{0}^{1} (2 - 2x) dx = 2 [2x - x^2]_{0}^{1} = 2 [(2 - 1) - (0)] = 2 \).