The correct answer is B:
\(\sqrt{2}-1\)The given equations are
\(y=cosx...(1)\)And,
\(y=sinx...(2)\)
Required area=Area(ABLA)+area(OBLO)
\(=∫^1_\frac{1}{\sqrt{2}}xdy+∫^\frac{1}{\sqrt{2}}_0xdy\)\(=∫^1_{\frac{1}{\sqrt{2}}}cos^{-1}y\,dy+∫^{\frac{1}{\sqrt{2}}}_0sin^{-1}xdy\)Integrating by parts,we obtain
\(=\bigg[ycos^{-1}y-\sqrt{1-y^2}\bigg]^1_{\frac{1}{\sqrt{2}}}+[xsin^{-1}x+\sqrt{1-x^2}]^{\frac{1}{\sqrt{2}}}_0\)\(=[cos^{-1}(1)-\frac{1}{\sqrt{2}}cos^{-1}(\frac{1}{\sqrt{2}})+\sqrt{1-\frac{1}{2}}]+[\frac{1}{\sqrt{2}}sin^{-1}(\frac{1}{\sqrt{2}})+\sqrt{1-\frac{1}{2}}-1]\)\(=\frac{-π}{4\sqrt{2}}+\frac{1}{\sqrt{2}}+\frac{π}{4\sqrt{2}}+\frac{1}{\sqrt{2}}-1\)\(=\frac{2}{\sqrt{2}}-1\)\(=\sqrt{2}-1units\)Thus,the correct answer is B.
Put
\(2x=t⇒dx=\frac{dt}{2}\)When
\(x=\frac{3}{2},t=3\) and when
\(x=\frac{1}{2},t=1\)\(=∫^{\frac{1}{2}}_02\sqrt{x}dx+\frac{1}{4}∫^3_1\sqrt{(3)^2-(t)^2}dt\)\(=2\bigg[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\bigg]^{\frac{1}{2}}_0+\frac{1}{4}\bigg[\frac{t}{2}\sqrt{9-t^2}+\frac{9}{2}sin^{-1}(\frac{t}{3})\bigg]^3_1\)\(=2\bigg[\frac{2}{3}(\frac{1}{2})^{\frac{3}{2}}\bigg]+\frac{1}{4}\bigg[{\frac{3}{2}\sqrt{9-(3)^2}+\frac{9}{2}sin^{-1}(\frac{3}{3})}\bigg]-\bigg[\frac{1}{2}\sqrt{9-(1)^2}+\frac{9}{2}sin^{-1}(\frac{1}{3})\bigg]\)\(=\frac{2}{3\sqrt{2}}+\frac{1}{4}[{0+\frac{9}{2}sin^{-1}(1)}-{\frac{1}{2}\sqrt{8}+\frac{9}{2}sin^{-1}(\frac{1}{3})}]\)\(=\frac{\sqrt2}{3}+\frac{9π}{16}-\frac{\sqrt{2}}{4}-\frac{9}{8}sin^{-1}(\frac{1}{3})\)\(=\frac{9π}{16}-\frac{9}{8}sin^{-1}(\frac{1}{3})+\frac{\sqrt{2}}{12}\)Therefore,the required area is
\([2\times(\frac{9π}{16}-\frac{9}{8}sin^{-1}(\frac{1}{3})+\frac{\sqrt{2}}{12})]=\frac{9π}{8}-\frac{9}{4}sin^{-1}(\frac{1}{3})+\frac{1}{3\sqrt{2}}units\)