The correct answer is B:\(\sqrt{2}-1\) The given equations are \(y=cosx...(1)\) And,\(y=sinx...(2)\) Required area=Area(ABLA)+area(OBLO) \(=∫^1_\frac{1}{\sqrt{2}}xdy+∫^\frac{1}{\sqrt{2}}_0xdy\) \(=∫^1_{\frac{1}{\sqrt{2}}}cos^{-1}y\,dy+∫^{\frac{1}{\sqrt{2}}}_0sin^{-1}xdy\) Integrating by parts,we obtain \(=\bigg[ycos^{-1}y-\sqrt{1-y^2}\bigg]^1_{\frac{1}{\sqrt{2}}}+[xsin^{-1}x+\sqrt{1-x^2}]^{\frac{1}{\sqrt{2}}}_0\) \(=[cos^{-1}(1)-\frac{1}{\sqrt{2}}cos^{-1}(\frac{1}{\sqrt{2}})+\sqrt{1-\frac{1}{2}}]+[\frac{1}{\sqrt{2}}sin^{-1}(\frac{1}{\sqrt{2}})+\sqrt{1-\frac{1}{2}}-1]\) \(=\frac{-π}{4\sqrt{2}}+\frac{1}{\sqrt{2}}+\frac{π}{4\sqrt{2}}+\frac{1}{\sqrt{2}}-1\) \(=\frac{2}{\sqrt{2}}-1\) \(=\sqrt{2}-1units\) Thus,the correct answer is B. Put \(2x=t⇒dx=\frac{dt}{2}\) When \(x=\frac{3}{2},t=3\) and when \(x=\frac{1}{2},t=1\) \(=∫^{\frac{1}{2}}_02\sqrt{x}dx+\frac{1}{4}∫^3_1\sqrt{(3)^2-(t)^2}dt\) \(=2\bigg[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\bigg]^{\frac{1}{2}}_0+\frac{1}{4}\bigg[\frac{t}{2}\sqrt{9-t^2}+\frac{9}{2}sin^{-1}(\frac{t}{3})\bigg]^3_1\) \(=2\bigg[\frac{2}{3}(\frac{1}{2})^{\frac{3}{2}}\bigg]+\frac{1}{4}\bigg[{\frac{3}{2}\sqrt{9-(3)^2}+\frac{9}{2}sin^{-1}(\frac{3}{3})}\bigg]-\bigg[\frac{1}{2}\sqrt{9-(1)^2}+\frac{9}{2}sin^{-1}(\frac{1}{3})\bigg]\) \(=\frac{2}{3\sqrt{2}}+\frac{1}{4}[{0+\frac{9}{2}sin^{-1}(1)}-{\frac{1}{2}\sqrt{8}+\frac{9}{2}sin^{-1}(\frac{1}{3})}]\) \(=\frac{\sqrt2}{3}+\frac{9π}{16}-\frac{\sqrt{2}}{4}-\frac{9}{8}sin^{-1}(\frac{1}{3})\) \(=\frac{9π}{16}-\frac{9}{8}sin^{-1}(\frac{1}{3})+\frac{\sqrt{2}}{12}\) Therefore,the required area is\([2\times(\frac{9π}{16}-\frac{9}{8}sin^{-1}(\frac{1}{3})+\frac{\sqrt{2}}{12})]=\frac{9π}{8}-\frac{9}{4}sin^{-1}(\frac{1}{3})+\frac{1}{3\sqrt{2}}units\)