Question:

The area bounded by the curves $\text{y} = \left(\text{x} - 1\right)^{2} \text{, } \text{y} = \left(\text{x} + 1\right)^{2}$ and $\text{y} = \frac{1}{4}$ is

Updated On: Jul 28, 2022
  • $\frac{1}{3} \text{ sq unit}$
  • $\frac{2}{3} \text{ sq unit}$
  • $\frac{1}{4} \text{ sq unit}$
  • $\frac{1}{5} \text{ sq unit}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The curves $\text{y} = \left(\text{x} - 1\right)^{2} \text{, } \text{y} = \left(\text{x} + 1\right)^{2}$ and $\text{y} = \frac{1}{4}$ are shown as where point of intersection are $\left(\text{x} - 1\right)^{2} = \frac{1}{4}$ $\Rightarrow $ $\text{x} = \frac{1}{2}$ and $\left(\text{x} + 1\right)^{2} = \frac{1}{4} \Rightarrow x = - \frac{1}{2}$ $\therefore $ $\text{Q} \left(\frac{1}{2} \text{, } \frac{1}{4}\right)$ and $\text{R} \left(- \frac{1}{2} \text{, } \frac{1}{4}\right)$ $\therefore $ Required area $= 2 \displaystyle \int _{0}^{1 / 2} \left[\left(\text{x} - 1\right)^{2} - \frac{1}{4}\right] \text{dx}$ $= 2 \left(\left[\frac{\left(\text{x} - 1\right)^{3}}{3} - \frac{1}{4} \text{x}\right]\right)_{0}^{1 / 2}$ $= 2 \left[- \frac{1}{8 \cdot 3} - \frac{1}{8} - \left(- \frac{1}{3} - 0\right)\right] = \frac{8}{2 4} = \frac{1}{3} \text{ sq unit}$
Was this answer helpful?
0
0

Concepts Used:

Applications of Integrals

There are distinct applications of integrals, out of which some are as follows:

In Maths

Integrals are used to find:

  • The center of mass (centroid) of an area having curved sides
  • The area between two curves and the area under a curve
  • The curve's average value

In Physics

Integrals are used to find:

  • Centre of gravity
  • Mass and momentum of inertia of vehicles, satellites, and a tower
  • The center of mass
  • The velocity and the trajectory of a satellite at the time of placing it in orbit
  • Thrust