Step 1: Rewrite circle equations in polar form.
\( x^2 + y^2 = 2x \Rightarrow r = 2\cos\theta. \) \( x^2 + y^2 = 4x \Rightarrow r = 4\cos\theta. \)
Step 2: Boundaries.
Region lies between \( r = 2\cos\theta \) and \( r = 4\cos\theta \), bounded by \( y = x \Rightarrow \theta = \pi/4 \) and \( y = 0 \Rightarrow \theta = 0. \)
Step 3: Area formula in polar coordinates.
\[ A = \frac{1}{2} \int_0^{\pi/4} \left[(4\cos\theta)^2 - (2\cos\theta)^2\right] d\theta = \frac{1}{2}\int_0^{\pi/4} (16\cos^2\theta - 4\cos^2\theta)d\theta = 6\int_0^{\pi/4}\cos^2\theta d\theta. \] \[ A = 6\left[\frac{\theta}{2} + \frac{\sin2\theta}{4}\right]_0^{\pi/4} = 6\left(\frac{\pi}{8} + \frac{1}{4}\right) = 3\left(\frac{\pi}{4} + \frac{1}{2}\right). \]
Final Answer: \( A = 3\left(\dfrac{\pi}{4} + \dfrac{1}{2}\right). \)