The parametric curve is
\[
x=\cos\theta,\quad y=\sin\theta,\quad z=\theta.
\]
Arc length is
\[
L=\int_{0}^{2\pi} \sqrt{\left(\frac{dx}{d\theta}\right)^2+\left(\frac{dy}{d\theta}\right)^2+\left(\frac{dz}{d\theta}\right)^2}\, d\theta.
\]
Compute derivatives:
\[
\frac{dx}{d\theta}=-\sin\theta,\quad
\frac{dy}{d\theta}=\cos\theta,\quad
\frac{dz}{d\theta}=1.
\]
Thus,
\[
\sin^2\theta+\cos^2\theta+1 = 2.
\]
So,
\[
L=\int_{0}^{2\pi}\sqrt{2}\, d\theta = 2\pi\sqrt{2}.
\]
Numerically,
\[
2\pi\sqrt{2} \approx 8.9.
\]