Step 1: Use the approximation formula
Using the approximation formula:
\[
f(a + h) \approx f(a) + h f'(a),
\]
where \( f(x) = \sqrt[3]{x} = x^{\frac{1}{3}} \).
Step 2: Compute the derivative
\[
f'(x) = \frac{1}{3} x^{-\frac{2}{3}}.
\]
Choosing \( a = 729 \), since \( \sqrt[3]{729} = 9 \), and \( h = 1 \):
\[
f'(729) = \frac{1}{3} (729)^{-\frac{2}{3}} = \frac{1}{3} \times \frac{1}{81} = \frac{1}{243}.
\]
Step 3: Compute approximation
\[
f(730) \approx f(729) + 1 \times f'(729).
\]
\[
= 9 + \frac{1}{243} \approx 9.0041.
\]
Thus, the correct answer is \( \boxed{9.0041} \).