>
Exams
>
Mathematics
>
Logarithms
>
the approximate value of log 10 99 is given log 10
Question:
The approximate value of \( \log_{10}99 \) is (Given \( \log_{10}e = 0.4343 \))
Show Hint
For numbers close to powers of 10, use logarithmic approximation formulas to quickly estimate values.
MHT CET - 2020
MHT CET
Updated On:
Jan 26, 2026
1.9657
1.9857
1.9957
1.9757
Hide Solution
Verified By Collegedunia
The Correct Option is
C
Solution and Explanation
Step 1: Express 99 suitably.
\[ \log_{10}99 = \log_{10}(100 - 1) \]
Step 2: Use logarithmic approximation.
For small \(x\), \[ \log(1-x) \approx -x \log e \] Thus, \[ \log_{10}99 = \log_{10}100 + \log_{10}\left(1-\frac{1}{100}\right) \]
Step 3: Substitute values.
\[ = 2 - \frac{1}{100}\log_{10}e \] \[ = 2 - \frac{1}{100}(0.4343) \]
Step 4: Final calculation.
\[ \log_{10}99 \approx 2 - 0.004343 = 1.9957 \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Logarithms
If the domain of
\[ f(x)=\log_{(10x^2-17x+7)}\,(18x^2-11x+1) \]
is $(-\infty,a)\cup(b,c)\cup(d,\infty)-\{e\}$, then find $90(a+b+c+d+e)$.
JEE Main - 2026
Mathematics
Logarithms
View Solution
Sum of solutions of the equation
\[ \log_{x-3}(6x^2 + 28x + 30) = 5 - 2\log_{x-10}(x^2 + 6x + 9) \]
are:
JEE Main - 2026
Mathematics
Logarithms
View Solution
The product of all solutions of the equation
\(e^{5(\log_e x)^2 + 3 = x^8, x > 0}\) , is :
JEE Main - 2025
Mathematics
Logarithms
View Solution
For a real number \( n>1 \), \( \frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \frac{1}{\log_4 n} = 1 \). The value of n is
CUET (PG) - 2025
Electronics Engineering
Logarithms
View Solution
If \( a, b, c \) are positive real numbers each distinct from unity, then the value of the determinant
\[ \left| \begin{matrix} 1 & \log_a b & \log_a c \\ \log_b a & 1 & \log_b c \\ \log_c a & \log_c b & 1 \end{matrix} \right| \] is:
WBJEE - 2025
Mathematics
Logarithms
View Solution
View More Questions
Questions Asked in MHT CET exam
If $ f(x) = 2x^2 - 3x + 5 $, find $ f(3) $.
MHT CET - 2025
Functions
View Solution
Evaluate the definite integral: \( \int_{-2}^{2} |x^2 - x - 2| \, dx \)
MHT CET - 2025
Definite Integral
View Solution
There are 6 boys and 4 girls. Arrange their seating arrangement on a round table such that 2 boys and 1 girl can't sit together.
MHT CET - 2025
permutations and combinations
View Solution
Given the equation: \[ 81 \sin^2 x + 81 \cos^2 x = 30 \] Find the value of \( x \)
.
MHT CET - 2025
Trigonometric Identities
View Solution
Evaluate the integral: \[ \int \frac{1}{\sin^2 2x \cdot \cos^2 2x} \, dx \]
MHT CET - 2025
Trigonometric Identities
View Solution
View More Questions