According to the given information
\(\frac{GM}{(R+h)^2}\)=\(\frac{1}{3}\)×\(\frac{GM}{R^2}\)
⇒ R+h=√3 R
⇒ h=(√3-1)R∼4685 km
The correct option is (B) : 4685 km
Net gravitational force at the center of a square is found to be \( F_1 \) when four particles having masses \( M, 2M, 3M \) and \( 4M \) are placed at the four corners of the square as shown in figure, and it is \( F_2 \) when the positions of \( 3M \) and \( 4M \) are interchanged. The ratio \( \dfrac{F_1}{F_2} = \dfrac{\alpha}{\sqrt{5}} \). The value of \( \alpha \) is 

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
The work which a body needs to do, against the force of gravity, in order to bring that body into a particular space is called Gravitational potential energy. The stored is the result of the gravitational attraction of the Earth for the object. The GPE of the massive ball of a demolition machine depends on two variables - the mass of the ball and the height to which it is raised. There is a direct relation between GPE and the mass of an object. More massive objects have greater GPE. Also, there is a direct relation between GPE and the height of an object. The higher that an object is elevated, the greater the GPE. The relationship is expressed in the following manner:
PEgrav = mass x g x height
PEgrav = m x g x h
Where,
m is the mass of the object,
h is the height of the object
g is the gravitational field strength (9.8 N/kg on Earth) - sometimes referred to as the acceleration of gravity.