The angular speed of motor wheel is increased from 1200 rpm to 3120 rpm in 16 sec. The angular acceleration of the motor wheel is
6π rad/s2
2π rad/s2
8π rad/s2
4π rad/s2
Angular acceleration \( \alpha = \frac{\omega_f - \omega_i}{t} \)
Given:
Step 1: Convert the angular velocities from rpm to radians per second (rad/s):
We know that:
For the initial angular velocity \( \omega_i \):
\[ \omega_i = 1200 \, \text{rpm} \times \frac{2\pi \, \text{radians}}{1 \, \text{revolution}} \times \frac{1 \, \text{minute}}{60 \, \text{seconds}} = 40\pi \, \text{rad/s} \]
For the final angular velocity \( \omega_f \):
\[ \omega_f = 3120 \, \text{rpm} \times \frac{2\pi \, \text{radians}}{1 \, \text{revolution}} \times \frac{1 \, \text{minute}}{60 \, \text{seconds}} = 104\pi \, \text{rad/s} \]
Step 2: Calculate the angular acceleration \( \alpha \):
\[ \alpha = \frac{\omega_f - \omega_i}{t} = \frac{104\pi - 40\pi}{16} = \frac{64\pi}{16} = 4\pi \, \text{rad/s}^2 \]
Therefore, the angular acceleration of the motor wheel is: \( 4\pi \, \text{rad/s}^2 \), which corresponds to option (D).
We shall use the equation:
\( \omega = \omega_0 + \alpha t \)
Where \( \omega_0 \) is the initial angular speed in radians per second:
\( \omega_0 = 2\pi \times \text{Angular speed in revs}^{-1} = \frac{60}{\text{s/min}} \times 2\pi \times \text{Angular speed in rev/min} = \frac{60}{2\pi \times 1200} = 40\pi \, \text{rads}^{-1} \)
Similarly, \( \omega \) is the final angular speed in radians per second:
\( \omega = \frac{60}{2\pi} \times 3120 = 2\pi \times 52 = 104\pi \, \text{rads}^{-1} \)
To calculate the angular acceleration, we use:
\( \alpha = \frac{\omega - \omega_0}{t} = \frac{104\pi - 40\pi}{16} = 4\pi \, \text{rads}^{-2} \)
The angular acceleration of the motor is \( 4\pi \, \text{rads}^{-2} \).
Rotational motion can be defined as the motion of an object around a circular path, in a fixed orbit.
The wheel or rotor of a motor, which appears in rotation motion problems, is a common example of the rotational motion of a rigid body.
Other examples: