According to Bohr’s model of the hydrogen atom, the angular momentum \( L \) of an electron in an orbit is quantized and given by:
\( L = n\hbar, \)
where \( n \) is the principal quantum number and \( \hbar \) is the reduced Planck’s constant.
For a hydrogen atom, the radius of the \( n \)-th orbit is given by:
\( r_n \propto n^2. \)
Therefore, we can express \( n \) in terms of \( r \):
\( n \propto \sqrt{r}. \)
Substituting this into the expression for angular momentum:
\( L \propto n \propto \sqrt{r}. \)
Hence, the angular momentum of an electron in a hydrogen atom is proportional to \( \sqrt{r}. \)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: