According to Bohr’s model of the hydrogen atom, the angular momentum \( L \) of an electron in an orbit is quantized and given by:
\( L = n\hbar, \)
where \( n \) is the principal quantum number and \( \hbar \) is the reduced Planck’s constant.
For a hydrogen atom, the radius of the \( n \)-th orbit is given by:
\( r_n \propto n^2. \)
Therefore, we can express \( n \) in terms of \( r \):
\( n \propto \sqrt{r}. \)
Substituting this into the expression for angular momentum:
\( L \propto n \propto \sqrt{r}. \)
Hence, the angular momentum of an electron in a hydrogen atom is proportional to \( \sqrt{r}. \)
An electron in the hydrogen atom initially in the fourth excited state makes a transition to \( n^{th} \) energy state by emitting a photon of energy 2.86 eV. The integer value of n will be 1cm.
Considering the Bohr model of hydrogen like atoms, the ratio of the radius $5^{\text {th }}$ orbit of the electron in $\mathrm{Li}^{2+}$ and $\mathrm{He}^{+}$is
Let \( C_{t-1} = 28, C_t = 56 \) and \( C_{t+1} = 70 \). Let \( A(4 \cos t, 4 \sin t), B(2 \sin t, -2 \cos t) \text{ and } C(3r - n_1, r^2 - n - 1) \) be the vertices of a triangle ABC, where \( t \) is a parameter. If \( (3x - 1)^2 + (3y)^2 = \alpha \) is the locus of the centroid of triangle ABC, then \( \alpha \) equals:
Designate whether each of the following compounds is aromatic or not aromatic.

The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)