We know that, angle of intersection between two circles is given by $\cos \theta=\frac{r_{1}^{2}+r_{2}^{2}-d^{2}}{2 r_{1} r_{2}}=\frac{\frac{17}{2}+13-\frac{10}{4}}{2 \sqrt{\frac{17}{2}} \cdot \sqrt{13}}$
$\Rightarrow \cos \theta=\left(\frac{19}{\sqrt{442}}\right)$ or $\tan \theta=\left(\frac{9}{19}\right)$ $\Rightarrow \theta=\tan ^{-1}\left(\frac{9}{19}\right)$