The sine of the angle between the straight line $\frac{x - 2}{3} = \frac{y - 3}{4} = \frac{4-z}{5}$ and the plane $2x - 2y + z = 5$ is:
Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to:
For hydrogen-like species, which of the following graphs provides the most appropriate representation of \( E \) vs \( Z \) plot for a constant \( n \)?
[E : Energy of the stationary state, Z : atomic number, n = principal quantum number]
The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is $ 4 \_\_\_\_\_$.
The two straight lines, whenever intersects, form two sets of angles. The angles so formed after the intersection are;
The absolute values of angles created depend on the slopes of the intersecting lines.
It is also worth taking note, that the angle so formed by the intersection of two lines cannot be calculated if any of the lines is parallel to the y-axis as the slope of a line parallel to the y-axis is an indeterminate.
Read More: Angle Between Two Lines