Given two planes:
\[
\vec{r} \cdot (12\hat{i} + 4\hat{j} - 3\hat{k}) = 5
\]
and
\[
\vec{r} \cdot (5\hat{i} + 3\hat{j} + 4\hat{k}) = 7
\]
Find the angle between the planes.
Step 1: The angle \( \theta \) between two planes is the angle between their normal vectors:
\[
\cos \theta = \frac{|\vec{n}_1 \cdot \vec{n}_2|}{|\vec{n}_1| \times |\vec{n}_2|}
\]
where
\[
\vec{n}_1 = (12, 4, -3), \quad \vec{n}_2 = (5, 3, 4)
\]
Step 2: Calculate dot product \( \vec{n}_1 \cdot \vec{n}_2 \):
\[
12 \times 5 + 4 \times 3 + (-3) \times 4 = 60 + 12 - 12 = 60
\]
Step 3: Calculate magnitudes:
\[
|\vec{n}_1| = \sqrt{12^2 + 4^2 + (-3)^2} = \sqrt{144 + 16 + 9} = \sqrt{169} = 13
\]
\[
|\vec{n}_2| = \sqrt{5^2 + 3^2 + 4^2} = \sqrt{25 + 9 + 16} = \sqrt{50} = 5 \sqrt{2}
\]
Step 4: Calculate cosine of angle:
\[
\cos \theta = \frac{60}{13 \times 5 \sqrt{2}} = \frac{60}{65 \sqrt{2}} = \frac{12}{13 \sqrt{2}} = \frac{6 \sqrt{2}}{13}
\]
(after rationalizing numerator and denominator)
Therefore,
\[
\boxed{\cos^{-1} \left( \frac{6 \sqrt{2}}{13} \right)}
\]