Step 1: Calculate the diagonals of the parallelogram. The diagonals are given by the vectors:
\[
\mathbf{d}_1 = \mathbf{u} + \mathbf{v} = (2i + 4j - 5k) + (i + 2j + 3k) = 3i + 6j - 2k,
\]
\[
\mathbf{d}_2 = \mathbf{u} - \mathbf{v} = (2i + 4j - 5k) - (i + 2j + 3k) = i + 2j - 8k.
\]
Step 2: Use the dot product to find the cosine of the angle \(\theta\) between the diagonals:
\[
\mathbf{d}_1 \cdot \mathbf{d}_2 = (3i + 6j - 2k) \cdot (i + 2j - 8k) = 3 + 12 + 16 = 31,
\]
\[
\|\mathbf{d}_1\| = \sqrt{3^2 + 6^2 + (-2)^2} = \sqrt{49} = 7,
\]
\[
\|\mathbf{d}_2\| = \sqrt{1^2 + 2^2 + (-8)^2} = \sqrt{69}.
\]
\[
\cos \theta = \frac{\mathbf{d}_1 \cdot \mathbf{d}_2}{\|\mathbf{d}_1\| \|\mathbf{d}_2\|} = \frac{31}{7\sqrt{69}}.
\]
Step 3: Compute the angle \(\theta\) using the cosine inverse function:
\[
\theta = \cos^{-1} \left(\frac{31}{7\sqrt{69}}\right).
\]