Step 1: Identify the skin depth relation.
The skin depth \(\delta\) is the depth at which the wave amplitude decreases to \(1/e\).
\[
\delta = \sqrt{\frac{2}{\mu \sigma \omega}}
\]
Step 2: Substitute given values.
\(\delta = 100\,\text{m},\ f = 1000\,\text{Hz},\ \omega = 2\pi f = 2\pi \times 1000 = 6283.19\,\text{rad/s},\ \mu = \mu_0 = 4\pi \times 10^{-7}\,\text{H/m}.\)
Step 3: Solve for conductivity \(\sigma\).
\[
\sigma = \frac{2}{\mu \omega \delta^2}
\]
\[
\sigma = \frac{2}{\,(4\pi \times 10^{-7})(6283.19)(100^2)}
\]
Step 4: Simplify denominator.
\((100^2) = 10000.\)
\(\mu \omega \delta^2 = (4\pi \times 10^{-7})(6283.19)(10000).\)
\[
= 1.2566 \times 10^{-6} \times 6283.19 \times 10000.
\]
First multiply: \(1.2566 \times 10^{-6} \times 6283.19 \approx 0.007896.\)
Then multiply by \(10000 \Rightarrow 78.96.\)
Step 5: Final calculation.
\[
\sigma = \frac{2}{78.96} \approx 0.0253\ \text{S/m}.
\]
\[
\boxed{0.025}
\]