Step 1: Intrinsic Impedance of Medium B
The intrinsic impedance \( Z \) of a medium is given by:
\[ Z = \sqrt{\frac{\mu}{\epsilon}} \] Where \( \mu = \mu_0 \mu_r \) and \( \epsilon = \epsilon_0 \epsilon_r \).
Using the given values for material B, we have:
\[ Z_B = 377 \times \sqrt{\frac{4}{9}} = 377 \times \frac{2}{3} = 251.33 \, \Omega \] So, the intrinsic impedance of medium B is approximately \( 251.33 \, \Omega \), which corresponds to option B \( 80\pi \, \Omega \).
Step 2: Reflection Coefficient
The reflection coefficient \( R \) is given by:
\[ R = \frac{Z_2 - Z_1}{Z_2 + Z_1} \] Where \( Z_1 = Z_A = 188.5 \, \Omega \) and \( Z_2 = Z_B = 251.33 \, \Omega \).
\[ R = \frac{251.33 - 188.5}{251.33 + 188.5} = 0.143 \] Thus, the reflection coefficient is approximately 0.143, which corresponds to option C \( \frac{1}{7} \).
Step 3: Transmission Coefficient
The transmission coefficient \( T \) is given by:
\[ T = 1 + R = 1 + 0.143 = 1.143 \] So, the transmission coefficient is 1.143, which corresponds to option D \( \frac{8}{7} \).
Step 4: Phase Shift Constant of Medium B
The phase shift constant \( \beta \) is given by:
\[ \beta = \omega \sqrt{\mu \epsilon} \] For medium B, we have:
\[ \beta_B = 6\pi \sqrt{\frac{4}{9}} = 6\pi \times \frac{2}{3} = 4\pi \] Thus, the phase shift constant of medium B is \( 4\pi \), which corresponds to option A \( 6\pi \).
The correct sequence is:
B, A, D, C
At room temperature, the energy band gap of different materials have been listed in the table below. Correctly match the energy band gap (List-I) with the corresponding material (List-II).
LIST-I (Energy band gap) | LIST-II (Material) |
---|---|
A. \( E_g = 0.67 \) eV | I. Polymer |
B. \( E_g = 1.1 \) eV | II. Germanium |
C. \( E_g = 1.43 \) eV | III. Silicon |
D. \( E_g > 5 \) eV | IV. Gallium Arsenide |
Signals and their Fourier Transforms are given in the table below. Match LIST-I with LIST-II and choose the correct answer.
LIST-I | LIST-II |
---|---|
A. \( e^{-at}u(t), a>0 \) | I. \( \pi[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] \) |
B. \( \cos \omega_0 t \) | II. \( \frac{1}{j\omega + a} \) |
C. \( \sin \omega_0 t \) | III. \( \frac{1}{(j\omega + a)^2} \) |
D. \( te^{-at}u(t), a>0 \) | IV. \( -j\pi[\delta(\omega - \omega_0) - \delta(\omega + \omega_0)] \) |
Match List-I with List-II:
List-I (Counters) | List-II (Delay/Number of States) |
---|---|
(A) n-bit ring counter | (I) Number of states is \( 2^n \) |
(B) MOD-\(2^n\) asynchronous counter | (II) Fastest counter |
(C) n-bit Johnson counter | (III) Number of used states is \( n \) |
(D) Synchronous counter | (IV) Number of used states is \( 2n \) |
Choose the correct answer from the options given below:
Match List-I with List-II:
List-I (Modulation Schemes) | List-II (Wave Expressions) |
---|---|
(A) Amplitude Modulation | (I) \( x(t) = A\cos(\omega_c t + k m(t)) \) |
(B) Phase Modulation | (II) \( x(t) = A\cos(\omega_c t + k \int m(t)dt) \) |
(C) Frequency Modulation | (III) \( x(t) = A + m(t)\cos(\omega_c t) \) |
(D) DSB-SC Modulation | (IV) \( x(t) = m(t)\cos(\omega_c t) \) |
Choose the correct answer:
Match List-I with List-II:
List-I (Amplifiers) | List-II (Characteristics) |
---|---|
(A) CE Amplifier | (I) Current buffer circuit |
(B) CB Amplifier | (II) Voltage buffer circuit |
(C) CC Amplifier | (III) High current gain |
(D) Darlington Amplifier | (IV) High power gain |
Choose the correct answer: