We are required to find the absolute maximum value of the function:
\[
f(x) = 2x^3 - 3x^2 - 36x + 9 \quad \text{on the interval} \quad [-3, 3].
\]
Step 1: Find the critical points of \( f(x) \)
First, compute the derivative of \( f(x) \):
\[
f'(x) = 6(x^2 - x - 6).
\]
Set \( f'(x) = 0 \):
\[
x^2 - x - 6 = 0.
\]
Factor the quadratic equation:
\[
(x - 3)(x + 2) = 0.
\]
The critical points are:
\[
x = -2, \quad x = 3.
\]
Step 2: Evaluate \( f(x) \) at the critical points and the endpoints
Now, evaluate the function \( f(x) \) at the critical points and the endpoints of the interval \( [-3, 3] \):
1. At \( x = -2 \):
\[
f(-2) = 2(-2)^3 - 3(-2)^2 - 36(-2) + 9 = -16 - 12 + 72 + 9 = 53.
\]
2. At \( x = -3 \):
\[
f(-3) = 2(-3)^3 - 3(-3)^2 - 36(-3) + 9 = -54 - 27 + 108 + 9 = 36.
\]
3. At \( x = 3 \):
\[
f(3) = 2(3)^3 - 3(3)^2 - 36(3) + 9 = 54 - 27 - 108 + 9 = -72.
\]
Step 3: Determine the absolute maximum value
From the above evaluations, we get:
\[
f(-2) = 53, \quad f(-3) = 36, \quad f(3) = -72.
\]
Thus, the absolute maximum value of \( f(x) \) on the interval \( [-3, 3] \) is:
\[
\boxed{53 \, \text{(Option B)}}.
\]