The 1H NMR spectrum of the given iridium complex at room temperature gave a single signal at 2.6 ppm, and its 31P NMR spectrum gave a single signal at 23.0 ppm. When the spectra were recorded at lower temperatures, both these signals split into a complex pattern. The intra-molecular dynamic processes shown by this molecule are:
The iridium complex depicted exhibits fluxional behavior, as observed from the NMR data. At room temperature:
At lower temperatures, these signals resolve into more complex multiplets, indicating slowed intramolecular processes.
This behavior suggests:
These dynamic motions average the chemical environments, causing single resonances in NMR at higher temperatures. On cooling, the slower motions lead to distinct environments and signal splitting.
Therefore, the dynamic processes involved are Berry pseudo-rotation and propeller-type rotation of the ethylene units along the Ir–alkene axis.
\[ \boxed{\text{Correct answer is (B)}} \]
The UV-visible spectrum of [Ni(en)\(_3\)]\(^{2+}\) (en = ethylenediamine) shows absorbance maxima at 11200 cm\(^{-1}\), 18350 cm\(^{-1}\), and 29000 cm\(^{-1}\).
[Given: Atomic number of Ni = 28] The correct match(es) between absorbance maximum and electronic transition is/are
Compound K displayed a strong band at 1680 cm−1 in its IR spectrum. Its 1H-NMR spectral data are as follows:
δ (ppm):
7.30 (d, J = 7.2 Hz, 2H)
6.80 (d, J = 7.2 Hz, 2H)
3.80 (septet, J = 7.0 Hz, 1H)
2.20 (s, 3H)
1.90 (d, J = 7.0 Hz, 6H)
The correct structure of compound K is:
The Vaska’s complex trans-IrCl(CO)(PPh3)2 shows a band at 1967 cm−1 for the \( \nu_{\text{CO}} \) stretching vibration in its infrared spectrum. The complex(es) that will show an increase in the \( \nu_{\text{CO}} \) stretching vibration from 1967 cm−1 is/are:
The Lineweaver-Burk plot for an enzyme obeying the Michaelis-Menten mechanism is given below.
The slope of the line is \(0.36 \times 10^2\) s, and the y-intercept is \(1.20\) mol\(^{-1}\) L s. The value of the Michaelis constant (\(K_M\)) is ________ \( \times 10^{-3} \) mol L\(^{-1}\) (in integer). [Note: \(v\) is the initial rate, and \([S]_0\) is the substrate concentration]
Consider a Carnot engine with a hot source kept at 500 K. From the hot source, 100 J of energy (heat) is withdrawn at 500 K. The cold sink is kept at 300 K. The efficiency of the Carnot engine is ___________ (rounded off to one decimal place).
For the cell reaction, \[ Hg_2Cl_2 (s) + H_2 (1 \, {atm}) \rightarrow 2Hg (l) + 2H^+ (a=1) + 2Cl^- (a=1) \] The standard cell potential is \( \mathcal{E}^0 = 0.2676 \) V, and \( \left(\frac{\partial \mathcal{E}^0}{\partial T}\right)_P = -3.19 \times 10^{-4} \) V K\(^{-1}\). The standard enthalpy change of the reaction (\( \Delta_r H^0 \)) at 298 K is \( -x \) kJ mol\(^{-1}\). The value of \( x \) is ___________ (rounded off to two decimal places). [Given: Faraday constant \( F = 96500 \) C mol\(^{-1}\)]
The mean energy of a molecule having two available energy states at \( \epsilon = 0 \) J and \( \epsilon = 4.14 \times 10^{-21} \) J at 300 K is ___________ \( \times 10^{-21} \) J (rounded off to two decimal places). [Given: Boltzmann constant \( k_B = 1.38 \times 10^{-23} \) J K\(^{-1}\)]
The kinetic energies of an electron (\(e\)) and a proton (\(p\)) are \(E\) and \(3E\), respectively. Given that the mass of a proton is 1836 times that of an electron, the ratio of their de Broglie wavelengths (\(\lambda_e / \lambda_p\)) is ___________ (rounded off to two decimal places).