For the cell reaction, \[ Hg_2Cl_2 (s) + H_2 (1 \, {atm}) \rightarrow 2Hg (l) + 2H^+ (a=1) + 2Cl^- (a=1) \] The standard cell potential is \( \mathcal{E}^0 = 0.2676 \) V, and \( \left(\frac{\partial \mathcal{E}^0}{\partial T}\right)_P = -3.19 \times 10^{-4} \) V K\(^{-1}\). The standard enthalpy change of the reaction (\( \Delta_r H^0 \)) at 298 K is \( -x \) kJ mol\(^{-1}\). The value of \( x \) is ___________ (rounded off to two decimal places). [Given: Faraday constant \( F = 96500 \) C mol\(^{-1}\)]
The relationship between the standard Gibbs free energy change (\( \Delta_r G^0 \)), the standard cell potential (\( \mathcal{E}^0 \)), and the number of electrons transferred (\( n \)) is: \[ \Delta_r G^0 = -n F \mathcal{E}^0 \] The number of electrons transferred in the given cell reaction can be determined by looking at the oxidation and reduction half-reactions: Oxidation: \( H_2 (g) \rightarrow 2H^+ (aq) + 2e^- \) (\(n=2\)) Reduction: \( Hg_2Cl_2 (s) + 2e^- \rightarrow 2Hg (l) + 2Cl^- (aq) \) (\(n=2\)) So, the number of electrons transferred is \( n = 2 \). Now, calculate the standard Gibbs free energy change at 298 K: \[ \Delta_r G^0 = -(2 \, \text{mol e}^-) \times (96500 \, \text{C mol}^{-1}) \times (0.2676 \, \text{V}) \] \[ \Delta_r G^0 = -51658.8 \, \text{J mol}^{-1} = -51.6588 \, \text{kJ mol}^{-1} \] The temperature dependence of the standard Gibbs free energy change is given by: \[ \left(\frac{\partial \Delta_r G^0}{\partial T}\right)_P = -\Delta_r S^0 \] We also know that: \[ \left(\frac{\partial \mathcal{E}^0}{\partial T}\right)_P = \frac{\Delta_r S^0}{nF} \] So, the standard entropy change (\( \Delta_r S^0 \)) is: \[ \Delta_r S^0 = nF \left(\frac{\partial \mathcal{E}^0}{\partial T}\right)_P = (2 \, \text{mol e}^-) \times (96500 \, \text{C mol}^{-1}) \times (-3.19 \times 10^{-4} \, \text{V K}^{-1}) \] \[ \Delta_r S^0 = -61.607 \, \text{J mol}^{-1} \text{K}^{-1} = -0.061607 \, \text{kJ mol}^{-1} \text{K}^{-1} \] The standard enthalpy change (\( \Delta_r H^0 \)) is related to \( \Delta_r G^0 \) and \( \Delta_r S^0 \) by: \[ \Delta_r H^0 = \Delta_r G^0 + T \Delta_r S^0 \] At 298 K: \[ \Delta_r H^0 = -51.6588 \, \text{kJ mol}^{-1} + (298 \, \text{K}) \times (-0.061607 \, \text{kJ mol}^{-1} \text{K}^{-1}) \] \[ \Delta_r H^0 = -51.6588 \, \text{kJ mol}^{-1} - 18.358886 \, \text{kJ mol}^{-1} \] \[ \Delta_r H^0 = -70.017686 \, \text{kJ mol}^{-1} \] Given that \( \Delta_r H^0 = -x \) kJ mol\(^{-1}\), the value of \( x \) is 70.017686. Rounding off to two decimal places, \( x = 70.02 \). This falls within the given range of 69.00 to 71.00.
Two positively charged particles \(m_1\) and \(m_2\) have been accelerated across the same potential difference of 200 keV. Given mass of \(m_1 = 1 \,\text{amu}\) and \(m_2 = 4 \,\text{amu}\). The de Broglie wavelength of \(m_1\) will be \(x\) times that of \(m_2\). The value of \(x\) is _______ (nearest integer). 
Structures of four disaccharides are given below. Among the given disaccharides, the non-reducing sugar is: 