For the cell reaction, \[ Hg_2Cl_2 (s) + H_2 (1 \, {atm}) \rightarrow 2Hg (l) + 2H^+ (a=1) + 2Cl^- (a=1) \] The standard cell potential is \( \mathcal{E}^0 = 0.2676 \) V, and \( \left(\frac{\partial \mathcal{E}^0}{\partial T}\right)_P = -3.19 \times 10^{-4} \) V K\(^{-1}\). The standard enthalpy change of the reaction (\( \Delta_r H^0 \)) at 298 K is \( -x \) kJ mol\(^{-1}\). The value of \( x \) is ___________ (rounded off to two decimal places). [Given: Faraday constant \( F = 96500 \) C mol\(^{-1}\)]
The relationship between the standard Gibbs free energy change (\( \Delta_r G^0 \)), the standard cell potential (\( \mathcal{E}^0 \)), and the number of electrons transferred (\( n \)) is: \[ \Delta_r G^0 = -n F \mathcal{E}^0 \] The number of electrons transferred in the given cell reaction can be determined by looking at the oxidation and reduction half-reactions: Oxidation: \( H_2 (g) \rightarrow 2H^+ (aq) + 2e^- \) (\(n=2\)) Reduction: \( Hg_2Cl_2 (s) + 2e^- \rightarrow 2Hg (l) + 2Cl^- (aq) \) (\(n=2\)) So, the number of electrons transferred is \( n = 2 \). Now, calculate the standard Gibbs free energy change at 298 K: \[ \Delta_r G^0 = -(2 \, \text{mol e}^-) \times (96500 \, \text{C mol}^{-1}) \times (0.2676 \, \text{V}) \] \[ \Delta_r G^0 = -51658.8 \, \text{J mol}^{-1} = -51.6588 \, \text{kJ mol}^{-1} \] The temperature dependence of the standard Gibbs free energy change is given by: \[ \left(\frac{\partial \Delta_r G^0}{\partial T}\right)_P = -\Delta_r S^0 \] We also know that: \[ \left(\frac{\partial \mathcal{E}^0}{\partial T}\right)_P = \frac{\Delta_r S^0}{nF} \] So, the standard entropy change (\( \Delta_r S^0 \)) is: \[ \Delta_r S^0 = nF \left(\frac{\partial \mathcal{E}^0}{\partial T}\right)_P = (2 \, \text{mol e}^-) \times (96500 \, \text{C mol}^{-1}) \times (-3.19 \times 10^{-4} \, \text{V K}^{-1}) \] \[ \Delta_r S^0 = -61.607 \, \text{J mol}^{-1} \text{K}^{-1} = -0.061607 \, \text{kJ mol}^{-1} \text{K}^{-1} \] The standard enthalpy change (\( \Delta_r H^0 \)) is related to \( \Delta_r G^0 \) and \( \Delta_r S^0 \) by: \[ \Delta_r H^0 = \Delta_r G^0 + T \Delta_r S^0 \] At 298 K: \[ \Delta_r H^0 = -51.6588 \, \text{kJ mol}^{-1} + (298 \, \text{K}) \times (-0.061607 \, \text{kJ mol}^{-1} \text{K}^{-1}) \] \[ \Delta_r H^0 = -51.6588 \, \text{kJ mol}^{-1} - 18.358886 \, \text{kJ mol}^{-1} \] \[ \Delta_r H^0 = -70.017686 \, \text{kJ mol}^{-1} \] Given that \( \Delta_r H^0 = -x \) kJ mol\(^{-1}\), the value of \( x \) is 70.017686. Rounding off to two decimal places, \( x = 70.02 \). This falls within the given range of 69.00 to 71.00.
The Lineweaver-Burk plot for an enzyme obeying the Michaelis-Menten mechanism is given below.
The slope of the line is \(0.36 \times 10^2\) s, and the y-intercept is \(1.20\) mol\(^{-1}\) L s. The value of the Michaelis constant (\(K_M\)) is ________ \( \times 10^{-3} \) mol L\(^{-1}\) (in integer). [Note: \(v\) is the initial rate, and \([S]_0\) is the substrate concentration]
Consider a Carnot engine with a hot source kept at 500 K. From the hot source, 100 J of energy (heat) is withdrawn at 500 K. The cold sink is kept at 300 K. The efficiency of the Carnot engine is ___________ (rounded off to one decimal place).
The mean energy of a molecule having two available energy states at \( \epsilon = 0 \) J and \( \epsilon = 4.14 \times 10^{-21} \) J at 300 K is ___________ \( \times 10^{-21} \) J (rounded off to two decimal places). [Given: Boltzmann constant \( k_B = 1.38 \times 10^{-23} \) J K\(^{-1}\)]
The kinetic energies of an electron (\(e\)) and a proton (\(p\)) are \(E\) and \(3E\), respectively. Given that the mass of a proton is 1836 times that of an electron, the ratio of their de Broglie wavelengths (\(\lambda_e / \lambda_p\)) is ___________ (rounded off to two decimal places).
Wavefunctions and energies for a particle confined in a cubic box are \( \psi_{n_x,n_y,n_z} \) and \( E_{n_x,n_y,n_z} \), respectively. The functions \( \phi_1, \phi_2, \phi_3 \), and \( \phi_4 \) are written as linear combinations of \( \psi_{n_x,n_y,n_z} \). Among these functions, the eigenfunction(s) of the Hamiltonian operator for this particle is/are \[ \phi_1 = \frac{1}{\sqrt{2}} \psi_{1,4,1} - \frac{1}{\sqrt{2}} \psi_{2,2,3} \] \[ \phi_2 = \frac{1}{\sqrt{2}} \psi_{1,5,1} + \frac{1}{\sqrt{2}} \psi_{3,3,3} \] \[ \phi_3 = \frac{1}{\sqrt{2}} \psi_{1,3,8} + \frac{1}{\sqrt{2}} \psi_{3,8,1} \] \[ \phi_4 = \frac{1}{2} \psi_{3,3,1} + \frac{\sqrt{3}}{2} \psi_{2,4,1} \]
The correct option(s) of reagents and reaction sequences suitable for carrying out the following transformation is/are
The UV-visible spectrum of [Ni(en)\(_3\)]\(^{2+}\) (en = ethylenediamine) shows absorbance maxima at 11200 cm\(^{-1}\), 18350 cm\(^{-1}\), and 29000 cm\(^{-1}\).
[Given: Atomic number of Ni = 28] The correct match(es) between absorbance maximum and electronic transition is/are
The correct option with regard to the following statements is
(a) Time-independent Schrödinger equation can be exactly solved for Be\(^{2+}\).
(b) For a particle confined in a one-dimensional box of length \( l \) with infinite potential barriers, the trial variation function \( \phi = \left[ \left( \frac{3}{l^3} \right)^{1/2} x \right] \) is not an acceptable trial wavefunction for \( 0 \le x \le l \).
(c) Wavefunctions for system of Fermions must be anti-symmetric with respect to exchange of any two Fermions in the system.
(d) Born-Oppenheimer approximation can be used to separate the vibrational and rotational motion of a molecule.
Compound K displayed a strong band at 1680 cm−1 in its IR spectrum. Its 1H-NMR spectral data are as follows:
δ (ppm):
7.30 (d, J = 7.2 Hz, 2H)
6.80 (d, J = 7.2 Hz, 2H)
3.80 (septet, J = 7.0 Hz, 1H)
2.20 (s, 3H)
1.90 (d, J = 7.0 Hz, 6H)
The correct structure of compound K is: