For the cell reaction, \[ Hg_2Cl_2 (s) + H_2 (1 \, {atm}) \rightarrow 2Hg (l) + 2H^+ (a=1) + 2Cl^- (a=1) \] The standard cell potential is \( \mathcal{E}^0 = 0.2676 \) V, and \( \left(\frac{\partial \mathcal{E}^0}{\partial T}\right)_P = -3.19 \times 10^{-4} \) V K\(^{-1}\). The standard enthalpy change of the reaction (\( \Delta_r H^0 \)) at 298 K is \( -x \) kJ mol\(^{-1}\). The value of \( x \) is ___________ (rounded off to two decimal places). [Given: Faraday constant \( F = 96500 \) C mol\(^{-1}\)]
The relationship between the standard Gibbs free energy change (\( \Delta_r G^0 \)), the standard cell potential (\( \mathcal{E}^0 \)), and the number of electrons transferred (\( n \)) is: \[ \Delta_r G^0 = -n F \mathcal{E}^0 \] The number of electrons transferred in the given cell reaction can be determined by looking at the oxidation and reduction half-reactions: Oxidation: \( H_2 (g) \rightarrow 2H^+ (aq) + 2e^- \) (\(n=2\)) Reduction: \( Hg_2Cl_2 (s) + 2e^- \rightarrow 2Hg (l) + 2Cl^- (aq) \) (\(n=2\)) So, the number of electrons transferred is \( n = 2 \). Now, calculate the standard Gibbs free energy change at 298 K: \[ \Delta_r G^0 = -(2 \, \text{mol e}^-) \times (96500 \, \text{C mol}^{-1}) \times (0.2676 \, \text{V}) \] \[ \Delta_r G^0 = -51658.8 \, \text{J mol}^{-1} = -51.6588 \, \text{kJ mol}^{-1} \] The temperature dependence of the standard Gibbs free energy change is given by: \[ \left(\frac{\partial \Delta_r G^0}{\partial T}\right)_P = -\Delta_r S^0 \] We also know that: \[ \left(\frac{\partial \mathcal{E}^0}{\partial T}\right)_P = \frac{\Delta_r S^0}{nF} \] So, the standard entropy change (\( \Delta_r S^0 \)) is: \[ \Delta_r S^0 = nF \left(\frac{\partial \mathcal{E}^0}{\partial T}\right)_P = (2 \, \text{mol e}^-) \times (96500 \, \text{C mol}^{-1}) \times (-3.19 \times 10^{-4} \, \text{V K}^{-1}) \] \[ \Delta_r S^0 = -61.607 \, \text{J mol}^{-1} \text{K}^{-1} = -0.061607 \, \text{kJ mol}^{-1} \text{K}^{-1} \] The standard enthalpy change (\( \Delta_r H^0 \)) is related to \( \Delta_r G^0 \) and \( \Delta_r S^0 \) by: \[ \Delta_r H^0 = \Delta_r G^0 + T \Delta_r S^0 \] At 298 K: \[ \Delta_r H^0 = -51.6588 \, \text{kJ mol}^{-1} + (298 \, \text{K}) \times (-0.061607 \, \text{kJ mol}^{-1} \text{K}^{-1}) \] \[ \Delta_r H^0 = -51.6588 \, \text{kJ mol}^{-1} - 18.358886 \, \text{kJ mol}^{-1} \] \[ \Delta_r H^0 = -70.017686 \, \text{kJ mol}^{-1} \] Given that \( \Delta_r H^0 = -x \) kJ mol\(^{-1}\), the value of \( x \) is 70.017686. Rounding off to two decimal places, \( x = 70.02 \). This falls within the given range of 69.00 to 71.00.
Two positively charged particles \(m_1\) and \(m_2\) have been accelerated across the same potential difference of 200 keV. Given mass of \(m_1 = 1 \,\text{amu}\) and \(m_2 = 4 \,\text{amu}\). The de Broglie wavelength of \(m_1\) will be \(x\) times that of \(m_2\). The value of \(x\) is _______ (nearest integer). 
Structures of four disaccharides are given below. Among the given disaccharides, the non-reducing sugar is: 
The ratio of the fundamental vibrational frequencies \( \left( \nu_{^{13}C^{16}O} / \nu_{^{12}C^{16}O} \right) \) of two diatomic molecules \( ^{13}C^{16}O \) and \( ^{12}C^{16}O \), considering their force constants to be the same, is ___________ (rounded off to two decimal places).
Courage : Bravery :: Yearning :
Select the most appropriate option to complete the analogy.
In the given figure, the numbers associated with the rectangle, triangle, and ellipse are 1, 2, and 3, respectively. Which one among the given options is the most appropriate combination of \( P \), \( Q \), and \( R \)?

A regular dodecagon (12-sided regular polygon) is inscribed in a circle of radius \( r \) cm as shown in the figure. The side of the dodecagon is \( d \) cm. All the triangles (numbered 1 to 12 in the figure) are used to form squares of side \( r \) cm, and each numbered triangle is used only once to form a square. The number of squares that can be formed and the number of triangles required to form each square, respectively, are:
