For a first-order reaction, the time required for a certain percentage of reaction completion can be calculated using the formula:
\(t = \frac{2.303}{k} \log \frac{[A]_0}{[A]},\)
where \([A]_0\) is the initial concentration, \([A]\) is the concentration at time \(t\), and \(k\) is the rate constant.
For 99.9% completion, \(\frac{[A]}{[A]_0} = 0.001\):
\(t = \frac{2.303}{k} \log \frac{1}{0.001} = \frac{2.303}{k} \log(10^3) = \frac{2.303}{k} \times 3 = 10 \times t_{1/2}.\)
Thus, the time required for 99.9% completion is 10 times the half-life.
The Correct answer is: 10
A(g) $ \rightarrow $ B(g) + C(g) is a first order reaction.
The reaction was started with reactant A only. Which of the following expression is correct for rate constant k ?
Rate law for a reaction between $A$ and $B$ is given by $\mathrm{R}=\mathrm{k}[\mathrm{A}]^{\mathrm{n}}[\mathrm{B}]^{\mathrm{m}}$. If concentration of A is doubled and concentration of B is halved from their initial value, the ratio of new rate of reaction to the initial rate of reaction $\left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)$ is
For $\mathrm{A}_{2}+\mathrm{B}_{2} \rightleftharpoons 2 \mathrm{AB}$ $\mathrm{E}_{\mathrm{a}}$ for forward and backward reaction are 180 and $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. If catalyst lowers $\mathrm{E}_{\mathrm{a}}$ for both reaction by $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Which of the following statement is correct?
Match List-I with List-II: List-I