For a first-order reaction, the time required for a certain percentage of reaction completion can be calculated using the formula:
\(t = \frac{2.303}{k} \log \frac{[A]_0}{[A]},\)
where \([A]_0\) is the initial concentration, \([A]\) is the concentration at time \(t\), and \(k\) is the rate constant.
For 99.9% completion, \(\frac{[A]}{[A]_0} = 0.001\):
\(t = \frac{2.303}{k} \log \frac{1}{0.001} = \frac{2.303}{k} \log(10^3) = \frac{2.303}{k} \times 3 = 10 \times t_{1/2}.\)
Thus, the time required for 99.9% completion is 10 times the half-life.
The Correct answer is: 10
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32