The potential of a hydrogen electrode in a solution can be calculated using the Nernst equation:
\(E = E^0 - \frac{0.059}{n} \log \frac{1}{[\text{H}^+]}\)
Given:
- \(E^0 = 0\) (for the standard hydrogen electrode)
- pH = 3, so \([\text{H}^+] = 10^{-3} \, \text{M}\)
Substitute into the equation:
\(E = 0 - 0.059 \times \log(10^3) = -0.059 \times 3 = -0.177 \, \text{V}\)
Thus, the electrode potential is:
\(E = -17.7 \times 10^{-2} \, \text{V}\)
The Correct answer is: 18
If all the words with or without meaning made using all the letters of the word "KANPUR" are arranged as in a dictionary, then the word at 440th position in this arrangement is:
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}
The equilibrium constant for decomposition of $ H_2O $ (g) $ H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \quad (\Delta G^\circ = 92.34 \, \text{kJ mol}^{-1}) $ is $ 8.0 \times 10^{-3} $ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ($ \alpha $) of water is _____ $\times 10^{-2}$ (nearest integer value). [Assume $ \alpha $ is negligible with respect to 1]