The potential of a hydrogen electrode in a solution can be calculated using the Nernst equation:
\(E = E^0 - \frac{0.059}{n} \log \frac{1}{[\text{H}^+]}\)
Given:
- \(E^0 = 0\) (for the standard hydrogen electrode)
- pH = 3, so \([\text{H}^+] = 10^{-3} \, \text{M}\)
Substitute into the equation:
\(E = 0 - 0.059 \times \log(10^3) = -0.059 \times 3 = -0.177 \, \text{V}\)
Thus, the electrode potential is:
\(E = -17.7 \times 10^{-2} \, \text{V}\)
The Correct answer is: 18
Standard electrode potential for \( \text{Sn}^{4+}/\text{Sn}^{2+} \) couple is +0.15 V and that for the \( \text{Cr}^{3+}/\text{Cr} \) couple is -0.74 V. The two couples in their standard states are connected to make a cell. The cell potential will be:
To calculate the cell potential (\( E^\circ_{\text{cell}} \)), we use the standard electrode potentials of the given redox couples.
Given data:
\( E^\circ_{\text{Sn}^{4+}/\text{Sn}^{2+}} = +0.15V \)
\( E^\circ_{\text{Cr}^{3+}/\text{Cr}} = -0.74V \)
(a.)Write the anode and cathode reactions and the overall cell reaction occurring in a lead storage battery during its use.
\[ f(x) = \left\{ \begin{array}{ll} 1 - 2x & \text{if } x < -1 \\ \frac{1}{3}(7 + 2|x|) & \text{if } -1 \leq x \leq 2 \\ \frac{11}{18} (x-4)(x-5) & \text{if } x > 2 \end{array} \right. \]