Solution: We need to find \(|P^{-1}AP - 2I|\).
Step 1. Calculating \(|P^{-1}AP - 2I|:\)
\(|P^{-1}AP - 2I| = |P^{-1}AP - 2P^{-1}P|\)
\(= |P^{-1}(A - 2I)P|\)
\(= |P^{-1}| \cdot |A - 2I| \cdot |P|\)
\(= |A - 2I|\)
Step 2. Calculating \(|A - 2I|:\)
\(A - 2I = \begin{bmatrix} 2 & 1 & 2 \\ 6 & 2 & 11 \\ 3 & 3 & 2 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 \\ 6 & 0 & 11 \\ 3 & 3 & 0 \end{bmatrix}\)
\(|A - 2I| = 69\)
Step 3. The prime factors of 69 are 3 and 23, so the sum of the prime factors is:
\(3 + 23 = 26\)
The Correct Answer is: 26
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)