Solution: We need to find \(|P^{-1}AP - 2I|\).
Step 1. Calculating \(|P^{-1}AP - 2I|:\)
\(|P^{-1}AP - 2I| = |P^{-1}AP - 2P^{-1}P|\)
\(= |P^{-1}(A - 2I)P|\)
\(= |P^{-1}| \cdot |A - 2I| \cdot |P|\)
\(= |A - 2I|\)
Step 2. Calculating \(|A - 2I|:\)
\(A - 2I = \begin{bmatrix} 2 & 1 & 2 \\ 6 & 2 & 11 \\ 3 & 3 & 2 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 \\ 6 & 0 & 11 \\ 3 & 3 & 0 \end{bmatrix}\)
\(|A - 2I| = 69\)
Step 3. The prime factors of 69 are 3 and 23, so the sum of the prime factors is:
\(3 + 23 = 26\)
The Correct Answer is: 26
The given graph illustrates:
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: