Step 1: Use the trend equation \( y = 5.93 + 1.18t \).
Step 2: Compute the trend values for \( t = -2, -1, 0, 1, 2, 3 \):
\[ \begin{array}{|c|c|c|} \hline \textbf{Year} & t & \textbf{Trend Value (y)} \\ \hline 1996 & -2 & 5.93 + 1.18(-2) = 3.57 \\ 1997 & -1 & 5.93 + 1.18(-1) = 4.75 \\ 1998 & 0 & 5.93 + 1.18(0) = 5.93 \\ 1999 & 1 & 5.93 + 1.18(1) = 7.11 \\ 2000 & 2 & 5.93 + 1.18(2) = 8.29 \\ 2001 & 3 & 5.93 + 1.18(3) = 9.47 \\ \hline \end{array} \]Step 3: Compute the trend value for 2002 (\( t = 4 \)):
\[ y = 5.93 + 1.18(4) = 10.65. \]Final Answer:

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?