The given Boolean expression is:
\[
(p \land q) \lor (p \land (q \lor p \lor r)).
\]
First, simplify the second part of the expression, \( p \land (q \lor p \lor r) \). By the distributive property:
\[
p \land (q \lor p \lor r) = (p \land q) \lor (p \land p) \lor (p \land r).
\]
Since \( p \land p = p \), we can simplify this further:
\[
= (p \land q) \lor p \lor (p \land r).
\]
Now, the original expression becomes:
\[
(p \land q) \lor (p \land q) \lor p \lor (p \land r).
\]
Simplify this expression by combining like terms:
\[
= p \lor (p \land q) \lor (p \land r).
\]
Finally, by the absorption law, \( p \lor (p \land q) = p \), so the expression reduces to:
\[
p \lor (p \land r).
\]
Thus, the final simplified expression is:
\[
p \land \sim q \lor p \lor r.
\]
Thus, the correct answer is \( p \land \sim q \lor p \lor r \).