Given $\angle C = 90^\circ$ and triangle is isosceles, so $C$ is at the right angle vertex
Then $AC \perp BC$ and $AC = BC$
Let $C = (x, y)$
Use slopes: $(y - 3)/(x - 2) \cdot (y - 5)/(x - 4) = -1$ for perpendicularity
Also use $AC^2 = BC^2$ to find $C$
Then use centroid formula:
$G = \left( \dfrac{x_1 + x_2 + x_3}{3}, \dfrac{y_1 + y_2 + y_3}{3} \right) = \left( \dfrac{2 + 4 + 15}{3}, \dfrac{3 + 5 + 25}{3} \right) = \left( \dfrac{10}{3}, \dfrac{11}{3} \right)$