The given function is f(x) ={ a+bx, x<1 4, x=1 b-ax x>1 \(\lim_{x\rightarrow 1^-}\) f(x) = \(\lim_{x\rightarrow 1}\) (a+bx) = a+b \(\lim_{x\rightarrow 1^-}\)f(x) = \(\lim_{x\rightarrow 1}\) (b-ax) = b-a f(1) = 4 It is given that \(\lim_{x\rightarrow 1}\) f(x) =f(1). ∴\(\lim_{x\rightarrow 1^-}\) f(x) = \(\lim_{x\rightarrow 1^+}\) f(x) =\(\lim_{x\rightarrow 1}\) f(x) = f(1) \(\Rightarrow\) a+b =4 and b-a =4 On solving these two equations, we obtain a =0 and b= 4. Thus, the respective possible values of a and b are 0 and 4.