\[ f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} \]
Substitute \(x = h\) and \(x = 0\) into \(f(x)\):
\[ f'(0) = \lim_{h \to 0} \frac{\left(2^h + 2^{-h}\right) \tan h \sqrt{\tan^{-1}(h^2 - h + 1)} - 0}{(7h^2 + 3h + 1)^3 \cdot h} \]
Using the limit properties, we get:
\[ f'(0) = \sqrt{\pi} \]
So, the correct answer is: \(\sqrt{\pi}\)
Find the interval in which $f(x) = x + \frac{1}{x}$ is always increasing, $x \neq 0$.