For a focal chord of the parabola \(y^2 = 12x\), we have:
\[ l = 4a \csc^2 \theta \]
Given that \(l = 12x\) and using the property of a focal chord, we find:
\[ l = 12 \times \frac{9}{d^2} \]
Thus:
\[ l d^2 = 108 \]