For a focal chord of the parabola \(y^2 = 12x\), we have:
\[ l = 4a \csc^2 \theta \]
Given that \(l = 12x\) and using the property of a focal chord, we find:
\[ l = 12 \times \frac{9}{d^2} \]
Thus:
\[ l d^2 = 108 \]
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: