Figure shows a current carrying square loop ABCD of edge length is $ a $ lying in a plane. If the resistance of the ABC part is $ r $ and that of the ADC part is $ 2r $, then the magnitude of the resultant magnetic field at the center of the square loop is: 
Find the equivalent capacitance between A and B, where \( C = 16 \, \mu F \).

Sliding contact of a potentiometer is in the middle of the potentiometer wire having resistance \( R_p = 1 \, \Omega \) as shown in the figure. An external resistance of \( R_e = 2 \, \Omega \) is connected via the sliding contact.
The current \( i \) is : 