Step 1: Understanding the Concept:
We can use the Pythagorean theorem in the right-angled triangle formed by the sides of the rectangle to find the length of the diagonal BD. Then, using the property that the angle in a semicircle is a right angle, we can find BX.
Step 2: Key Formula or Approach:
1. Pythagorean Theorem: In a right-angled triangle, \((\text{Hypotenuse})^2 = (\text{Base})^2 + (\text{Height})^2\).
2. Angle in a Semicircle Theorem: The angle subtended by a diameter at any point on the circumference is a right angle (90\(^\circ\)).
3. Property of Right-Angled Triangles: In a right-angled triangle, if an altitude is drawn to the hypotenuse, then \((\text{Leg})^2 = (\text{Adjacent segment of hypotenuse}) \times (\text{Whole hypotenuse})\).
Step 3: Detailed Explanation:
Given: \[\begin{array}{rl} \bullet & \text{ABCD is a rectangle, so \(\angle DAB = 90^\circ\).} \\ \bullet & \text{AB = 12 cm, AD = 9 cm.} \\ \end{array}\] 1. Find the value of BD: In right-angled \(\triangle\)DAB, BD is the hypotenuse. By Pythagorean theorem: \[ BD^2 = AB^2 + AD^2 \] \[ BD^2 = 12^2 + 9^2 = 144 + 81 = 225 \] \[ BD = \sqrt{225} = 15 \text{ cm} \] 2. Find the value of BX: A semicircle is drawn with AD as the diameter. The diagonal BD intersects the semicircle at point X. According to the Angle in a Semicircle Theorem, the angle subtended by the diameter AD at point X on the circumference is 90\(^\circ\). \[ \therefore \angle AXD = 90^\circ \] This means that seg AX is perpendicular to the diagonal BD. Now, consider the right-angled \(\triangle\)DAB. seg AX is the altitude from vertex A to the hypotenuse BD. Using the property of right-angled triangles (related to geometric mean): \[ AB^2 = BX \times BD \] We have AB = 12 cm and we found BD = 15 cm. \[ 12^2 = BX \times 15 \] \[ 144 = 15 \times BX \] \[ BX = \frac{144}{15} = \frac{48}{5} = 9.6 \text{ cm} \]
Step 4: Final Answer:
The length of BD is 15 cm and the length of BX is 9.6 cm.
In the following figure chord MN and chord RS intersect at point D. If RD = 15, DS = 4, MD = 8, find DN by completing the following activity:
Activity :
\(\therefore\) MD \(\times\) DN = \(\boxed{\phantom{SD}}\) \(\times\) DS \(\dots\) (Theorem of internal division of chords)
\(\therefore\) \(\boxed{\phantom{8}}\) \(\times\) DN = 15 \(\times\) 4
\(\therefore\) DN = \(\frac{\boxed{\phantom{60}}}{8}\)
\(\therefore\) DN = \(\boxed{\phantom{7.5}}\)
In the following figure, circle with centre D touches the sides of \(\angle\)ACB at A and B. If \(\angle\)ACB = 52\(^\circ\), find measure of \(\angle\)ADB.
рд╕рд░рд╕реНрд╡рддреА рд╡рд┐рджреНрдпрд╛рд▓рдп, рдХреЛрд▓реНрд╣рд╛рдкреБрд░ рдореЗрдВ рдордирд╛рдП рдЧрдП 'рд╢рд┐рдХреНрд╖рдХ рджрд┐рд╡рд╕' рд╕рдорд╛рд░реЛрд╣ рдХрд╛ 70 рд╕реЗ 80 рд╢рдмреНрджреЛрдВ рдореЗрдВ рд╡реГрддреНрддрд╛рдВрдд рд▓реЗрдЦрди рдХреАрдЬрд┐рдПред
(рд╡реГрддреНрддрд╛рдВрдд рдореЗрдВ рд╕реНрдерд▓, рдХрд╛рд▓, рдШрдЯрдирд╛ рдХрд╛ рдЙрд▓реНрд▓реЗрдЦ рд╣реЛрдирд╛ рдЕрдирд┐рд╡рд╛рд░реНрдп рд╣реИ)
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдЬрд╛рдирдХрд╛рд░реА рдХреЗ рдЖрдзрд╛рд░ рдкрд░ 50 рд╕реЗ 60 рд╢рдмреНрджреЛрдВ рдореЗрдВ рд╡рд┐рдЬреНрдЮрд╛рдкрди рддреИрдпрд╛рд░ рдХреАрдЬрд┐рдП :