In the following species, how many species have the same magnetic moment?
(i) Cr\(^{2+}\)
(ii) Mn\(^{3+}\)
(iii) Ni\(^{2+}\)
(iv) Sc\(^{2+}\)
(v) Zn\(^{2+}\)
(vi) V\(^{3+}\)
(vii) Ti\(^{4+}\)
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
The metal-carbon bond possesses both the σ and π character in a metal carbonyl. The synergic effect produced by the metal-ligand bond strengthens the bond between the carbonyl molecule and the metal. The types of bonding that exist in metal carbonyls are as follows:
They are found to dissociate in various solutions. The stability of a coordination compound in a solution mainly depends on the degree of association between the two species involved in the state of equilibrium. For the formation of the compound quantitatively the stability of any complex is given by the magnitude of the equilibrium constant. For instance,
A + 4B→ AB4