
Space between the plates of a parallel plate capacitor of plate area 4 cm$^2$ and separation of $ d = 1.77 \, \text{mm} $, is filled with uniform dielectric materials with dielectric constants (3 and 5) as shown in figure. Another capacitor of capacitance 7.5 pF is connected in parallel with it. The effective capacitance of this combination is ____ pF.
The problem involves calculating the effective capacitance of a parallel plate capacitor arrangement with two dielectric materials and another capacitor connected in parallel.
First, the capacitance of the given capacitor with dielectric materials can be calculated. This capacitor is split into two capacitors in series due to the different dielectric constants.
Using the capacitance formula for a parallel plate capacitor: \( C = \frac{k\varepsilon_0A}{d} \), where \( k \) is the dielectric constant, \( \varepsilon_0 \) is the permittivity of free space \((8.85 \times 10^{-12} \, \text{F/m})\), \( A \) is the area, and \( d \) is the separation.
Calculate the capacitance for each layer:
Calculate \( C_1 \) and \( C_2 \):
The series combination \( C_s \) is given by:
\( \frac{1}{C_s} = \frac{1}{C_1} + \frac{1}{C_2} \implies C_s = \frac{C_1 \times C_2}{C_1 + C_2} = \frac{(2 \times 10^{-12}) \times (1.2 \times 10^{-12})}{2 \times 10^{-12} + 1.2 \times 10^{-12}} = 0.75 \times 10^{-12} \, \text{F} \)
Convert to picofarads: \( C_s = 7.5 \, \text{pF} \).
Another 7.5 pF capacitor is connected in parallel, so the effective capacitance \( C_{\text{eff}} \) is:
\( C_{\text{eff}} = C_s + 7.5 = 7.5 + 7.5 = 15 \, \text{pF} \).
The computed capacitance falls within the given range of [15,15] pF.
Therefore, the effective capacitance is 15 pF.

Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R
Assertion A: Work done in moving a test charge between two points inside a uniformly charged spherical shell is zero, no matter which path is chosen.
Reason R: Electrostatic potential inside a uniformly charged spherical shell is constant and is same as that on the surface of the shell.
In the light of the above statements, choose the correct answer from the options given below
Two infinite identical charged sheets and a charged spherical body of charge density ' $\rho$ ' are arranged as shown in figure. Then the correct relation between the electrical fields at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D points is:
