Given:
- Plate area of the capacitor, \( A = 4 \, \text{cm}^2 = 4 \times 10^{-4} \, \text{m}^2 \),
- Separation between the plates, \( d = 1.77 \, \text{mm} = 1.77 \times 10^{-3} \, \text{m} \),
- Dielectric constants for the two regions, \( k_1 = 5 \) and \( k_2 = 3 \),
- Capacitance of an additional parallel capacitor, \( C_3 = 7.5 \, \text{pF} \),
- Permittivity of free space, \( \varepsilon_0 = 8.85 \times 10^{-12} \, \text{F/m} \).
Step 1: Calculate the capacitance for each section with the dielectric constants.
For the first section (with dielectric constant \( k_1 = 5 \)):
The capacitance is given by:
\[
C_1 = \frac{\varepsilon_0 A}{d/2} \cdot k_1
\]
Substitute the values:
\[
C_1 = \frac{(8.85 \times 10^{-12}) \times (4 \times 10^{-4})}{1.77 \times 10^{-3}/2} \cdot 5
\]
First calculate the denominator \( d/2 = \frac{1.77 \times 10^{-3}}{2} = 8.85 \times 10^{-4} \, \text{m} \).
Now substitute:
\[
C_1 = \frac{8.85 \times 10^{-12} \times 4 \times 10^{-4}}{8.85 \times 10^{-4}} \cdot 5 = 4 \times 10^{-12} \times 5 = 20 \times 10^{-12} \, \text{F} = 20 \, \text{pF}
\]
For the second section (with dielectric constant \( k_2 = 3 \)):
Using the same formula:
\[
C_2 = \frac{\varepsilon_0 A}{d/2} \cdot k_2
\]
Substitute the values:
\[
C_2 = \frac{(8.85 \times 10^{-12}) \times (4 \times 10^{-4})}{1.77 \times 10^{-3}/2} \cdot 3
\]
\[
C_2 = \frac{8.85 \times 10^{-12} \times 4 \times 10^{-4}}{8.85 \times 10^{-4}} \cdot 3 = 4 \times 10^{-12} \times 3 = 12 \times 10^{-12} \, \text{F} = 12 \, \text{pF}
\]
Step 2: Find the total capacitance of the two dielectric regions in series.
The two dielectric regions are in series, so the total capacitance \( C_{\text{total}} \) is given by:
\[
\frac{1}{C_{\text{total}}} = \frac{1}{C_1} + \frac{1}{C_2}
\]
Substitute the values for \( C_1 \) and \( C_2 \):
\[
\frac{1}{C_{\text{total}}} = \frac{1}{20 \, \text{pF}} + \frac{1}{12 \, \text{pF}}
\]
\[
\frac{1}{C_{\text{total}}} = \frac{3}{60 \, \text{pF}} + \frac{5}{60 \, \text{pF}} = \frac{8}{60 \, \text{pF}} = \frac{2}{15 \, \text{pF}}
\]
Thus,
\[
C_{\text{total}} = \frac{15}{2} \, \text{pF} = 7.5 \, \text{pF}
\]
Step 3: Add the capacitance of the additional parallel capacitor.
The total capacitance of the system is the sum of the series capacitance and the parallel capacitance \( C_3 \):
\[
C_{\text{effective}} = C_{\text{total}} + C_3
\]
\[
C_{\text{effective}} = 7.5 \, \text{pF} + 7.5 \, \text{pF} = 15 \, \text{pF}
\]
Thus, the effective capacitance is \( \boxed{15 \, \text{pF}} \).