Step 1: Rearrange the equation:
\[
y \, dx = (x + 2y^2) \, dy
\]
\[
\frac{dx}{dy} = \frac{x + 2y^2}{y}
\]
Step 2: Separate the variables:
\[
\frac{dx}{dy} = \frac{x}{y} + 2y
\]
Step 3: Integrate both sides:
\[
\int \frac{dx}{dy} \, dy = \int \left( \frac{x}{y} + 2y \right) \, dy
\]
The solution involves simplifying the integrals and then solving for \( x \) and \( y \).
Thus, the solution is obtained.