Step1:Representthesystemofequationsinmatrixform.
Thegivensystemcanbewrittenas:
\[
AX=B
\]
where
\[
A=\begin{bmatrix}
3-2 3
2 1-1
4 -3 2
\end{bmatrix},
\quad
X=\begin{bmatrix}
x
y
z
\end{bmatrix},
\quad
B=\begin{bmatrix}
8
1
4
\end{bmatrix}.
\]
Step2:Findthedeterminantof\(A\).
\[
\text{det}(A)=\begin{vmatrix}
3 -2 3
2 1 -1
4 -3 2
\end{vmatrix}.
\]
Expandingalongthefirstrow:
\[
\text{det}(A)=3\begin{vmatrix}
1 -1
-3 2
\end{vmatrix}
-(-2)\begin{vmatrix}
2 -1
4 2
\end{vmatrix}
+3\begin{vmatrix}
2 1
4 -3
\end{vmatrix}.
\]
Simplifyeachminor:
\[
\begin{vmatrix}
1 -1
-3 2
\end{vmatrix}=(1)(2)-(-1)(-3)=2-3=-1,
\quad
\begin{vmatrix}
2 -1
4 2
\end{vmatrix}=(2)(2)-(-1)(4)=4+4=8,
\]
\[
\begin{vmatrix}
2 1
4 -3
\end{vmatrix}=(2)(-3)-(1)(4)=-6-4=-10.
\]
Substitutethesevalues:
\[
\text{det}(A)=3(-1)-(-2)(8)+3(-10)=-3+16-30=-17.
\]
Step3:Computetheinverseof\(A\).
Theinverseof\(A\)isgivenby:
\[
A^{-1}=\frac{1}{\text{det}(A)}\cdot\text{Adj}(A),
\]
where\(\text{Adj}(A)\)istheadjointof\(A\).Computethecofactorsof\(A\)tofind\(\text{Adj}(A)\).
Step4:Solvefor\(X\).
Using\(X=A^{-1}B\),computethevaluesof\(x\),\(y\),and\(z\).