Given:
\[\vec{a} + \vec{b} + \vec{c} = \vec{0} \Rightarrow \vec{c} = -(\vec{a} + \vec{b})\]
The magnitude of \(\vec{c}\) is:
\[|\vec{c}|^2 = |\vec{a} + \vec{b}|^2\]
Expand using the vector magnitude formula:
\[|\vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b}\]
Substitute \(|\vec{a}| = |\vec{b}| = 1\) and \(|\vec{c}| = 2\):
\[2^2 = 1 + 1 + 2(\vec{a} \cdot \vec{b})\]
Simplify:
\[4 = 2 + 2(\vec{a} \cdot \vec{b})\]
Solve for \(\vec{a} \cdot \vec{b}\):
\[2(\vec{a} \cdot \vec{b}) = 2 \Rightarrow \vec{a} \cdot \vec{b} = 0\]
This means \(\vec{a}\) and \(\vec{b}\) are perpendicular.
From the equation \(\vec{c} = -(\vec{a} + \vec{b})\):
\[|\vec{a} + \vec{b}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2} = \sqrt{1^2 + 1^2} = \sqrt{2}\]
Thus:
\[\vec{c} = -(\vec{a} + \vec{b})\]
and its direction is opposite to \(\vec{a} + \vec{b}\).
Since \(\vec{c}\) is opposite to \(\vec{a} + \vec{b}\), and \(\vec{b}\) contributes to \(\vec{c}\), the angle between \(\vec{b}\) and \(\vec{c}\) is
\[\theta = 180^\circ.\]
Thus:
\[180^\circ.\]