Let us assume:
\[
a = x - 1 \quad \text{and} \quad b = y - 2.
\]
The given system of equations becomes:
\[
\frac{5}{a} + \frac{1}{b} = \frac{7}{4} \quad \text{(1)},
\]
\[
\frac{6}{a} - \frac{2}{b} = \frac{1}{2} \quad \text{(2)}.
\]
Step 1:
Multiply equation (1) by 4 and equation (2) by 2 to eliminate the fractions:
From equation (1):
\[
4 \left(\frac{5}{a} + \frac{1}{b}\right) = 7 \quad \Rightarrow \quad \frac{20}{a} + \frac{4}{b} = 7 \quad \text{(3)}.
\]
From equation (2):
\[
2 \left(\frac{6}{a} - \frac{2}{b}\right) = 1 \quad \Rightarrow \quad \frac{12}{a} - \frac{4}{b} = 1 \quad \text{(4)}.
\]
Step 2:
Add equations (3) and (4):
\[
\left(\frac{20}{a} + \frac{4}{b}\right) + \left(\frac{12}{a} - \frac{4}{b}\right) = 7 + 1.
\]
Simplifying:
\[
\frac{32}{a} = 8 \quad \Rightarrow \quad a = 4.
\]
Step 3:
Substitute \( a = 4 \) into equation (3):
\[
\frac{20}{4} + \frac{4}{b} = 7 \quad \Rightarrow \quad 5 + \frac{4}{b} = 7 \quad \Rightarrow \quad \frac{4}{b} = 2 \quad \Rightarrow \quad b = 2.
\]
Step 4:
Now, substitute \( a = 4 \) and \( b = 2 \) into the relations \( a = x - 1 \) and \( b = y - 2 \):
\[
x - 1 = 4 \quad \Rightarrow \quad x = 5,
\]
\[
y - 2 = 2 \quad \Rightarrow \quad y = 4.
\]
Conclusion:
The solution is \( x = 5 \) and \( y = 4 \).