Rearrange the given equation to separate the variables \( x \) and \( y \):
\[
\frac{\tan^{-1}y - x}{1 + y^2} \, dy = dx.
\]
Rewrite as:
\[
\frac{\tan^{-1}y}{1 + y^2} \, dy - x \, dx = 0.
\]
Step 1: Split the equation.
The first term involves \( y \), and the second term involves \( x \). Separate these:
\[
\frac{\tan^{-1}y}{1 + y^2} \, dy = x \, dx.
\]
Step 2: Integrate both sides.
For the left-hand side:
\[
\int \frac{\tan^{-1}y}{1 + y^2} \, dy.
\]
Let \( u = \tan^{-1}y \), so \( du = \frac{1}{1 + y^2} \, dy \):
\[
\int \frac{\tan^{-1}y}{1 + y^2} \, dy = \int u \, du = \frac{u^2}{2} + C_1 = \frac{(\tan^{-1}y)^2}{2} + C_1.
\]
For the right-hand side:
\[
\int x \, dx = \frac{x^2}{2} + C_2.
\]
Step 3: Combine the results.
\[
\frac{(\tan^{-1}y)^2}{2} = \frac{x^2}{2} + C,
\]
where \( C = C_2 - C_1 \).
Multiply through by 2 to simplify:
\[
(\tan^{-1}y)^2 = x^2 + 2C.
\]
Let \( 2C = C_1 \), so:
\[
(\tan^{-1}y)^2 - x^2 = C_1.
\]
Final Answer:
\[
\boxed{(\tan^{-1}y)^2 - x^2 = C_1}
\]