Solve the equation \(\begin{vmatrix} x+a &x &x \\ x &x+a &x \\ x&x &x+a \end{vmatrix}=0\) , a≠0
\(\begin{vmatrix} x+a &x &x \\ x &x+a &x \\ x&x &x+a \end{vmatrix}=0\)
Applying R1\(\rightarrow\)R1+R2+R3, we get:
\(\begin{vmatrix} 3x+a &3x+a &3x+a \\ x &x+a &x \\ x&x &x+a \end{vmatrix}=0\)
\(\Rightarrow\)(3x+a)\(\begin{vmatrix} 1 &1 &1 \\ x &x+a &x \\ x&x &x+a \end{vmatrix}=0\)
Applying C2\(\rightarrow\)C2-C1 and C3\(\rightarrow\)C3-C1, we have:
(3x+a)\(\begin{vmatrix} 1&0 &0 \\ x& a &0 \\ x&0 &a \end{vmatrix}\)=0
Expanding along R1,we have:
(3x+a)[1\(\times\)a2]=0
\(\Rightarrow\)a2(3x+a)=0
But a≠0,
Therefore we have
3x+a=0
\(\Rightarrow x=-\frac{a}{3}\)
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: