Solve the equation \(\begin{vmatrix} x+a &x &x \\ x &x+a &x \\ x&x &x+a \end{vmatrix}=0\) , a≠0
\(\begin{vmatrix} x+a &x &x \\ x &x+a &x \\ x&x &x+a \end{vmatrix}=0\)
Applying R1\(\rightarrow\)R1+R2+R3, we get:
\(\begin{vmatrix} 3x+a &3x+a &3x+a \\ x &x+a &x \\ x&x &x+a \end{vmatrix}=0\)
\(\Rightarrow\)(3x+a)\(\begin{vmatrix} 1 &1 &1 \\ x &x+a &x \\ x&x &x+a \end{vmatrix}=0\)
Applying C2\(\rightarrow\)C2-C1 and C3\(\rightarrow\)C3-C1, we have:
(3x+a)\(\begin{vmatrix} 1&0 &0 \\ x& a &0 \\ x&0 &a \end{vmatrix}\)=0
Expanding along R1,we have:
(3x+a)[1\(\times\)a2]=0
\(\Rightarrow\)a2(3x+a)=0
But a≠0,
Therefore we have
3x+a=0
\(\Rightarrow x=-\frac{a}{3}\)
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Complete and balance the following chemical equations: (a) \[ 2MnO_4^-(aq) + 10I^-(aq) + 16H^+(aq) \rightarrow \] (b) \[ Cr_2O_7^{2-}(aq) + 6Fe^{2+}(aq) + 14H^+(aq) \rightarrow \]
Balance Sheet of Chandan, Deepak and Elvish as at 31st March, 2024
Liabilities | Amount (₹) | Assets | Amount (₹) |
---|---|---|---|
Capitals: | Fixed Assets | 27,00,000 | |
Chandan | 7,00,000 | Stock | 3,00,000 |
Deepak | 5,00,000 | Debtors | 2,00,000 |
Elvish | 3,00,000 | Cash | 1,00,000 |
General Reserve | 4,50,000 | ||
Creditors | 13,50,000 | ||
Total | 33,00,000 | Total | 33,00,000 |