Question:

Solve the equation \(\begin{vmatrix} x+a &x  &x \\  x &x+a  &x \\   x&x  &x+a  \end{vmatrix}=0\) , a≠0

Updated On: Sep 1, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

\(\begin{vmatrix} x+a &x  &x \\  x &x+a  &x \\   x&x  &x+a  \end{vmatrix}=0\)
Applying R1\(\rightarrow\)R1+R2+R3, we get:
\(\begin{vmatrix} 3x+a &3x+a &3x+a \\  x &x+a  &x \\   x&x  &x+a  \end{vmatrix}=0\)


\(\Rightarrow\)(3x+a)\(\begin{vmatrix} 1 &1  &1 \\  x &x+a  &x \\   x&x  &x+a  \end{vmatrix}=0\)

Applying C2\(\rightarrow\)C2-C1 and C3\(\rightarrow\)C3-C1, we have:
(3x+a)\(\begin{vmatrix}  1&0  &0 \\   x& a &0 \\   x&0  &a  \end{vmatrix}\)=0

Expanding along R1,we have:
(3x+a)[1\(\times\)a2]=0
\(\Rightarrow\)a2(3x+a)=0
But a≠0,
Therefore we have 
3x+a=0
\(\Rightarrow x=-\frac{a}{3}\)

Was this answer helpful?
0
0