Solve the equation \(\begin{vmatrix} x+a &x &x \\ x &x+a &x \\ x&x &x+a \end{vmatrix}=0\) , a≠0
\(\begin{vmatrix} x+a &x &x \\ x &x+a &x \\ x&x &x+a \end{vmatrix}=0\)
Applying R1\(\rightarrow\)R1+R2+R3, we get:
\(\begin{vmatrix} 3x+a &3x+a &3x+a \\ x &x+a &x \\ x&x &x+a \end{vmatrix}=0\)
\(\Rightarrow\)(3x+a)\(\begin{vmatrix} 1 &1 &1 \\ x &x+a &x \\ x&x &x+a \end{vmatrix}=0\)
Applying C2\(\rightarrow\)C2-C1 and C3\(\rightarrow\)C3-C1, we have:
(3x+a)\(\begin{vmatrix} 1&0 &0 \\ x& a &0 \\ x&0 &a \end{vmatrix}\)=0
Expanding along R1,we have:
(3x+a)[1\(\times\)a2]=0
\(\Rightarrow\)a2(3x+a)=0
But a≠0,
Therefore we have
3x+a=0
\(\Rightarrow x=-\frac{a}{3}\)
A settling chamber is used for the removal of discrete particulate matter from air with the following conditions. Horizontal velocity of air = 0.2 m/s; Temperature of air stream = 77°C; Specific gravity of particle to be removed = 2.65; Chamber length = 12 m; Chamber height = 2 m; Viscosity of air at 77°C = 2.1 × 10\(^{-5}\) kg/m·s; Acceleration due to gravity (g) = 9.81 m/s²; Density of air at 77°C = 1.0 kg/m³; Assume the density of water as 1000 kg/m³ and Laminar condition exists in the chamber.
The minimum size of particle that will be removed with 100% efficiency in the settling chamber (in $\mu$m is .......... (round off to one decimal place).