Solve the equation for x,y,z and t if 2\(\begin{bmatrix}x&y\\y&t\end{bmatrix}\)+3\(\begin{bmatrix}1&-1\\0&2\end{bmatrix}\)=3\(\begin{bmatrix}3&5\\4&6\end{bmatrix}\)
2\(\begin{bmatrix}x&y\\y&t\end{bmatrix}\)+3\(\begin{bmatrix}1&-1\\0&2\end{bmatrix}\)=3\(\begin{bmatrix}3&5\\4&6\end{bmatrix}\)
\(\Rightarrow \) \(\begin{bmatrix}2x&2z\\2y&2t\end{bmatrix}\)+\(\begin{bmatrix}3&-3\\0&6\end{bmatrix}\)=\(\begin{bmatrix}9&15\\12&18\end{bmatrix}\)
\(\Rightarrow \begin{bmatrix}2x+3&2z-3\\2y&2t+6\end{bmatrix}\)=\(\begin{bmatrix}9&15\\12&18\end{bmatrix}\)
Comparing the corresponding elements of these two matrices, we get:
2x+3=9
\(\Rightarrow\) x=3
2y=12
\(\Rightarrow\) y=6
2z-3=15
\(\Rightarrow\) 2z=18
z=9
2t+6=18
2t=12
t=6.
\(\therefore\) x=3,y=6,z=9 and t=6
Let $ A = \begin{bmatrix} \alpha & -1 \\6 & \beta \end{bmatrix},\ \alpha > 0 $, such that $ \det(A) = 0 $ and $ \alpha + \beta = 1 $. If $ I $ denotes the $ 2 \times 2 $ identity matrix, then the matrix $ (1 + A)^5 $ is:
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: