Solve the equation for x,y,z and t if 2\(\begin{bmatrix}x&y\\y&t\end{bmatrix}\)+3\(\begin{bmatrix}1&-1\\0&2\end{bmatrix}\)=3\(\begin{bmatrix}3&5\\4&6\end{bmatrix}\)
2\(\begin{bmatrix}x&y\\y&t\end{bmatrix}\)+3\(\begin{bmatrix}1&-1\\0&2\end{bmatrix}\)=3\(\begin{bmatrix}3&5\\4&6\end{bmatrix}\)
\(\Rightarrow \) \(\begin{bmatrix}2x&2z\\2y&2t\end{bmatrix}\)+\(\begin{bmatrix}3&-3\\0&6\end{bmatrix}\)=\(\begin{bmatrix}9&15\\12&18\end{bmatrix}\)
\(\Rightarrow \begin{bmatrix}2x+3&2z-3\\2y&2t+6\end{bmatrix}\)=\(\begin{bmatrix}9&15\\12&18\end{bmatrix}\)
Comparing the corresponding elements of these two matrices, we get:
2x+3=9
\(\Rightarrow\) x=3
2y=12
\(\Rightarrow\) y=6
2z-3=15
\(\Rightarrow\) 2z=18
z=9
2t+6=18
2t=12
t=6.
\(\therefore\) x=3,y=6,z=9 and t=6
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
Complete and balance the following chemical equations: (a) \[ 2MnO_4^-(aq) + 10I^-(aq) + 16H^+(aq) \rightarrow \] (b) \[ Cr_2O_7^{2-}(aq) + 6Fe^{2+}(aq) + 14H^+(aq) \rightarrow \]
Balance Sheet of Chandan, Deepak and Elvish as at 31st March, 2024
Liabilities | Amount (₹) | Assets | Amount (₹) |
---|---|---|---|
Capitals: | Fixed Assets | 27,00,000 | |
Chandan | 7,00,000 | Stock | 3,00,000 |
Deepak | 5,00,000 | Debtors | 2,00,000 |
Elvish | 3,00,000 | Cash | 1,00,000 |
General Reserve | 4,50,000 | ||
Creditors | 13,50,000 | ||
Total | 33,00,000 | Total | 33,00,000 |