Step 1: Recognize type.
Equation is Cauchy–Euler form:
\[
x^2 y'' + 4x y' + 2y = 0
\]
Step 2: Trial solution.
Assume $y = x^m$. Then:
\[
m(m-1)x^m + 4mx^m + 2x^m = 0
\]
\[
m^2 + 3m + 2 = 0
\]
\[
(m+1)(m+2)=0 \Rightarrow m=-1,-2
\]
Step 3: General solution.
\[
y(x) = \frac{A}{x} + \frac{B}{x^2}
\]
Step 4: Apply conditions.
At $x=1$, $y(1)=0$:
\[
A + B = 0 \Rightarrow B = -A
\]
Derivative:
\[
y'(x) = -\frac{A}{x^2} - \frac{2B}{x^3}
\]
At $x=1$, $y'(1)=1$:
\[
- A - 2B = 1
\]
Substitute $B=-A$:
\[
- A - 2(-A) = -A + 2A = A = 1
\]
So $A=1, B=-1$.
Step 5: Final solution.
\[
y(x) = \frac{1}{x} - \frac{1}{x^2}
\]
At $x=2$:
\[
y(2) = \frac{1}{2} - \frac{1}{4} = 0.25
\]
\[
\boxed{0.25}
\]