Question:

Solution of the equation $\sec \theta - cosec \:\theta=\frac{4}{3}$ is

Updated On: Jul 7, 2022
  • $\theta=\frac{n\pi}{2}+\frac{(-1)^n}{2}\sin^{-1}\frac{3}{4}$
  • $\theta=n\pi+(-1)^n \sin^{-1}\frac{3}{4}$
  • $\theta=n\pi\pm \sin^{-1}\left(\frac{3}{4}\right)$
  • None of these.
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

We have $\frac{1}{\cos \, \theta} -\frac{1}{\sin \, \theta} = \frac{4}{3}$ $\Rightarrow$ $\sin\, \theta - \cos \,\theta = \frac{4}{3} \sin\, \theta \,\cos \,\theta$ $ \Rightarrow\, 3\left(\sin\, \theta - \cos \,\theta\right) = 2\, \sin \,\theta $ $\Rightarrow \,9\left(\sin^{2} \,\theta +\cos^{2}\,\theta - 2\, \sin\, \theta\, \cos \, \theta\right) = 4\, \sin^{2}\, 2\,\theta $ $\Rightarrow \,9\left(1 - \sin\, 2\theta\right) = 4 \sin^{2} \,\theta$ $ \Rightarrow\, \sin\, 2 \, \theta = \frac{3}{4} $ or $\sin \,2 \, \theta = - 3 $ But $\sin \, 2 \, \theta = - 3$ is not possible. $\therefore$ $ \sin\, 2\theta = \frac{3}{4} $ $\therefore$ $ 2\theta = n\pi +\left(-1\right)^{n } \sin^{-1} \frac{3}{4} $ $\Rightarrow \theta = \frac{n\pi}{2 } + \frac{\left(-1\right)^{n}}{2} sin \left(\frac{3}{4}\right), n \in I$
Was this answer helpful?
0
0

Concepts Used:

Homogeneous Differential Equation

A differential equation having the formation f(x,y)dy = g(x,y)dx is known to be homogeneous differential equation if the degree of f(x,y) and g(x, y) is entirely same. A function of form F(x,y), written in the formation of kF(x,y) is called a homogeneous function of degree n, for k≠0. Therefore, f and g are the homogeneous functions of the same degree of x and y. Here, the change of variable y = ux directs to an equation of the form;

dx/x = h(u) du which could be easily desegregated.

To solve a homogeneous differential equation go through the following steps:-

Given the differential equation of the type