Solute \(A\) is absorbed from a gas into water in a packed bed operating at steady state. The absorber operating pressure and temperature are 1 atm and 300 K, respectively. At the gas-liquid interface, \(y_i = 1.5 x_i\),
where \(y_i\) and \(x_i\) are the interfacial gas and liquid mole fractions of \(A\), respectively. At a particular location in the absorber, the mole fractions of \(A\) in the bulk gas and in the bulk water are 0.02 and 0.002, respectively. If the ratio of the local individual mass transfer coefficients for the transport of \(A\) on the gas-side (\(k_y\)) to that on the water-side (\(k_x\)), \(\frac{k_y}{k_x} = 2\), then \(y_i\) equals _________ (rounded off to 3 decimal places).
\[ y_i = 1.5 x_i \quad \text{(relation between interfacial gas and liquid mole fractions)} \] \[ y_{\text{bulk}} = 0.02 \quad \text{(mole fraction of \(A\) in the bulk gas)} \] \[ x_{\text{bulk}} = 0.002 \quad \text{(mole fraction of \(A\) in the bulk water)} \] \[ \frac{k_y}{k_x} = 2 \quad \text{(ratio of mass transfer coefficients)} \]
Step 2: Interfacial Composition Using Mass Transfer Coefficient Ratio.At steady state, the rate of mass transfer from gas to liquid is equal: \[ k_y (y_{\text{bulk}} - y_i) = k_x (x_i - x_{\text{bulk}}) \] Using the ratio: \[ \frac{k_y}{k_x} = 2 \Rightarrow k_y = 2k_x \] Substituting: \[ 2k_x (0.02 - y_i) = k_x (x_i - 0.002) \] Divide both sides by \(k_x\): \[ 2(0.02 - y_i) = x_i - 0.002 \tag{1} \]
Step 3: Use Interfacial Equilibrium Relation.From equilibrium: \[ y_i = 1.5 x_i \Rightarrow x_i = \frac{y_i}{1.5} \] Substituting into equation (1): \[ 2(0.02 - y_i) = \frac{y_i}{1.5} - 0.002 \] Multiply both sides by 1.5: \[ 3(0.02 - y_i) = y_i - 0.003 \] \[ 0.06 - 3y_i = y_i - 0.003 \] \[ 0.063 = 4y_i \Rightarrow y_i = \frac{0.063}{4} = 0.01575 \]
Final Answer: The interfacial mole fraction of A in the gas phase is \( \boxed{0.0158} \) (rounded to 4 decimal places).An electrical wire of 2 mm diameter and 5 m length is insulated with a plastic layer of thickness 2 mm and thermal conductivity \( k = 0.1 \) W/(m·K). It is exposed to ambient air at 30°C. For a current of 5 A, the potential drop across the wire is 2 V. The air-side heat transfer coefficient is 20 W/(m²·K). Neglecting the thermal resistance of the wire, the steady-state temperature at the wire-insulation interface __________°C (rounded off to 1 decimal place).

GIVEN:
Kinematic viscosity: \( \nu = 1.0 \times 10^{-6} \, {m}^2/{s} \)
Prandtl number: \( {Pr} = 7.01 \)
Velocity boundary layer thickness: \[ \delta_H = \frac{4.91 x}{\sqrt{x \nu}} \]
The first-order irreversible liquid phase reaction \(A \to B\) occurs inside a constant volume \(V\) isothermal CSTR with the initial steady-state conditions shown in the figure. The gain, in kmol/m³·h, of the transfer function relating the reactor effluent \(A\) concentration \(c_A\) to the inlet flow rate \(F\) is:

A hot plate is placed in contact with a cold plate of a different thermal conductivity as shown in the figure. The initial temperature (at time $t = 0$) of the hot plate and cold plate are $T_h$ and $T_c$, respectively. Assume perfect contact between the plates. Which one of the following is an appropriate boundary condition at the surface $S$ for solving the unsteady state, one-dimensional heat conduction equations for the hot plate and cold plate for $t>0$?

The following data is given for a ternary \(ABC\) gas mixture at 12 MPa and 308 K:

\(y_i\): mole fraction of component \(i\) in the gas mixture
\(\hat{\phi}_i\): fugacity coefficient of component \(i\) in the gas mixture at 12 MPa and 308 K
The fugacity of the gas mixture is _________ MPa (rounded off to 3 decimal places).