Solute \(A\) is absorbed from a gas into water in a packed bed operating at steady state. The absorber operating pressure and temperature are 1 atm and 300 K, respectively. At the gas-liquid interface, \(y_i = 1.5 x_i\),
where \(y_i\) and \(x_i\) are the interfacial gas and liquid mole fractions of \(A\), respectively. At a particular location in the absorber, the mole fractions of \(A\) in the bulk gas and in the bulk water are 0.02 and 0.002, respectively. If the ratio of the local individual mass transfer coefficients for the transport of \(A\) on the gas-side (\(k_y\)) to that on the water-side (\(k_x\)), \(\frac{k_y}{k_x} = 2\), then \(y_i\) equals _________ (rounded off to 3 decimal places).