For colligative property problems:
• Use boiling or freezing point changes to determine molality.
• Consider dissociation factors for ionic compounds to adjust molality for total particles.
• For solubility products, express ion concentrations in terms of molarity and solve for Ksp.
Step 1: Determine the molality from boiling point elevation:
The boiling point elevation \(\Delta T_b\) is given by:
\[\Delta T_b = K_b \times m,\]
where \(m\) is the molality of the solution. Substituting the values:
\[0.15 = 0.5 \times m \quad \implies \quad m = \frac{0.15}{0.5} = 0.3~\text{mol/kg}.\]
Step 2: Total molality after adding NaCl:
NaCl dissociates into two ions (\(\text{Na}^+\) and \(\text{Cl}^-\)). When 0.2 mol of NaCl is added to the solution, the molality increases by \(0.2 \times 2 = 0.4~\text{mol/kg}\)
Total molality after adding NaCl is:
\[m_{\text{total}} = 0.3 + 0.4 = 0.7~\text{mol/kg}.\]
Step 3: Freezing point depression:
The freezing point depression \(\Delta T_f\) is given by:
\[\Delta T_f = K_f \times m_{\text{total}}.\]
Substituting the given freezing point depression and \(K_f\):
\[0.8 = 1.8 \times m_{\text{total}} \quad \implies \quad m_{\text{total}} = \frac{0.8}{1.8} = 0.444~\text{mol/kg}.\]
Step 4: Solubility product of PbCl\(_2\):
Lead chloride (PbCl\(_2\)) dissociates as:
\[\text{PbCl}_2 \leftrightharpoons \text{Pb}^{2+} + 2\text{Cl}^-.\]
Let \(s\) be the molarity of PbCl\(_2\) in solution. The concentrations of the ions at equilibrium are:
\[[\text{Pb}^{2+}] = s, \quad [\text{Cl}^-] = 2s.\]
The solubility product \(K_{sp}\) is:
\[K_{sp} = [\text{Pb}^{2+}] \times [\text{Cl}^-]^2 = s \times (2s)^2 = 4s^3.\]
From freezing point depression, the effective molality of ions is \(0.444~\text{mol/kg}\). Using the relation for ionic dissociation:
\[m_{\text{total}} = s + 2s = 3s \quad \implies \quad s = \frac{0.444}{3} = 0.148~\text{mol/L}.\]
Step 5: Calculate \(K_{sp}\):
Substituting \(s = 0.148\) into the expression for \(K_{sp}\):
\[K_{sp} = 4 \times (0.148)^3 = 4 \times 0.00323 = 0.01292 \quad \text{or} \quad 13 \times 10^{-6}.\]
Final Answer: \(13\).
A substance 'X' (1.5 g) dissolved in 150 g of a solvent 'Y' (molar mass = 300 g mol$^{-1}$) led to an elevation of the boiling point by 0.5 K. The relative lowering in the vapour pressure of the solvent 'Y' is $____________ \(\times 10^{-2}\). (nearest integer)
[Given : $K_{b}$ of the solvent = 5.0 K kg mol$^{-1}$]
Assume the solution to be dilute and no association or dissociation of X takes place in solution.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
