The correct answer is: \(=x(sin^{-1}x)^2+2\sqrt{1-x^2}sin^{-1}x-2x+C\) Let \(I=∫(Sin^{-1}x)^2.1 dx\) Taking\((sin^{-1}x)^2\) as first function and 1 as second function and integrating by parts,we obtain \(I=(sin^{-1}x)∫1dx-∫[{\frac{d}{dx}(sin^{-1}x)^2.∫1.dx}]dx\) \(=(sin^{-1}x)^2.x-∫\frac{2sin^{-1}x}{\sqrt{1-x^2}}.x dx\) \(=x(sin^{-1}x)^2+∫sin^{-1}x.(\frac{-2x}{\sqrt{1-x^2}})dx\) \(=x(sin^{-1}x)^2+[sin^{-1}x∫\frac{-2x}{\sqrt{1-x^2}} dx-∫{(\frac{d}{dx} sin^{-1}x)∫\frac{-2x}{\sqrt{1-x^2}} dx}]dx\) \(=x(sin^{-1}x)^2+[sin^{-1}x.2\sqrt{1-x^2}-∫\frac{1}{\sqrt{1-x^2}}.2\sqrt{1-x^2} dx]\) \(=x(sin^{-1}x)^2+2\sqrt{1-x^2} sin^{-1}x-∫2.dx\) \(=x(sin^{-1}x)^2+2\sqrt{1-x^2}sin^{-1}x-2x+C\)
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.